Sample Assignment 3
Discussed on 2020-09-2/
Not graded

Question 1 (Storing numbers in a queue)
Data structure std: :vector is very popular;
it allows push_back(...) method: you can
add new elements at the end, but not at the
beginning.

Double ended queue (deque) is another data
structure (as fast and efficient as vector); it
allows pushing elements at either end:
push_front(...) and push_back(...).

Source file Filel.cpp:

#include <iostream>
#include <string>
#include <deque>

using namespace std;

int main() {
deque<int> queuel;
int n;

© 00 N O U W N =

while (cin >> n) {
queuel.push_front(n);

}

e e
B W N = O

string sep; // initialized as empty
for (int m : queuel) {
cout << sep << m; sep = ",";

==
o v

}

cout << endl;

R S
S © ®

int head = queuel.at(0);

queuel.pop_front();

cout << head << " > ";

for (int m : queuel) {
cout << m << ", ";

NN N
E X N =

}

N
ot

}

&)
(=]

Input file input.txt:

1 135
2 246

What is the output from Filel.cpp on this
input?
(A)

1,3,5,2,4,6
6 —> 492’5:331:

(B)

1,3,5,2,4,6
1->3,5,2,4,6,

(©)

6,4,2,5,3,1
1 ->3,5,2,4,6,

(D)

6,4,2,5,3,1
6 -> 4,2,5,3,1,

Question 2 (Reading Line by Line)

Source file File2.cpp:

#tinclude <iostream>
#include <sstream>
#include <map>
#include <string>
#include <vector>

using namespace std;
int main() {
map<int, vector<int>> mymap;

© 0w N O U ke W N

=
=]

vector<int> vect;
string line;
while (getline(cin, line)) {
istringstream sstr(line);
int n;
while (sstr >> n) {
vect.push_back(n) ;

e e e
N O s WN

}

(ORI
S © ®

mymap.insert(
make_pair(vect.at(0), vect));
vect.clear();

NN NN
TR W N =
—

map<int,vector<int>>::iterator it=
mymap.begin() ;
while (it != mymap.end()) {
cout << it ->first << ": ";
for (int m : it -> second) {
cout << m << ",";

W NN NN
o © o N O

}

it++; cout << endl;

w W W w
R I C Rt
<

“

Input file input.txt:

1 135
2 789
3 246

Mark true/false statements about this code:

(A) The output is 3 lines
(B) The output is 1 line

(C) Tterator it visits pairs from mymap in the
same order they were inserted.

(D) Iterator it visits pairs from mymap in a
random order.

(E) Iterator it visits pairs from mymap in in-
creasing order of the key (it -> first).

Question 3: This code inserts some ele-
ments in a std::set, then tries to find (el-
ement 5 is there, but 4 is not). Finally, we
iterate over the set in two different ways: as
in C++11 (for-loop syntax for an iterator) or
an older construct with an explicit iterator.

Source file File3.cpp:

#include <iostream>
#include <set>

using namespace std;
int main() {
set<int> myset;
myset.insert(11);
myset.insert(13);
myset.insert(5);
myset.insert(7);
myset.insert(5);
bool b4,b5;
b4 = myset.find(4) == myset.end();
b5 = myset.find(5) == myset.end();
cout << "(b4,b5)=(" << b4 <<
",M << b5 << ")" << endl;
for (int u: myset) {
cout << u << "; ",

© 0 N O U R W N =

e T e e =
0 N O Uk W N = O

}

cout << endl;

set<int>::iterator it;

it = myset.begin();

while (it != myset.end()) {
cout << (*xit) << "; ",
it++;

}

}

NN NN NN N =
N O g W N = O ©

Mark which statements about this code are
true/false.

(A) 1st line in output is (b3,b4) = (0,1).

(B) Lines 17-19 and 23-26 iterate over myset
in the same way.

(C) Iterator on Lines 17-19 visits elements
in increasing order.

(D) Iterator on Lines 17-19 visits elements
in random order.

Question 4 (Sets/Vectors with Custom
Classes)

The code below does the task of EX02: it
reads student data from STDIN; outputs the
smallest and the largest student compared by
age; or by height (if ages are equal).

Source file File4.cpp:

1 #include <iostream>

2 #include <iomanip>

3 #include <set>

4

5 using namespace std;

6 |struct Student {

7 int age;

8 double height;

9 Student (int aa = 1, double hh = 1):
10 age(aa), height(hh) {}

11

12 friend istream &operator>>(

13 istream &input, Student &S) {
14 input >> S.age >> S.height;
15 return input;

16 }

17

18 friend ostream &operator<<(

19 ostream &output,

20 const Student &S) {

21 output << "Student(" <<

22 S.age << "," << std::fixed <<
23 std: :setprecision(5) <<

24 S.height << ")";

25 return output;

26 }

27

28 friend bool operator<(

29 const Student &left,

30 const Student &right) {

31 return (left.age<right.age) ||
32 (left.age == right.height &&
33 left.height<right.height);
34 }

35 | };

36

37 |int main() {

38 int n; cin >> n;

39 set<Student> myset;

40 for (int i = 0; i < n; i++) {
41 Student student;

42 cin >> student;

43 myset.insert(student);

44 }

45 cout << *(myset.begin()) << endl;
46 cout << *(--myset.end());

a7 return O;

48 |}

Write short answers to these questions:

(A) What happens, if Line 43 is rewritten as
follows: cout << *(myset.end());

(B) How would you overload the compari-
son operation, if you only look at age,
but order by age alphabetically (as in
a dictionary). Namely, age "17” comes
before age 72” (since digit ”1” alphabet-
ically precedes digit "2”). (Just show
how the Lines 31-33 would look, if you
order alphabetically.)

(C) Assume that the class Student had a
destructor. On which line of your code
(if at all) is it called, when you read the
input containing data for a few students
and insert them all in a set.

(D) Assume that you want to use std: : vector
instead of a set; and output the first and
the last element you inserted into a vec-
tor. What would you write on Line 43,
Line 45 and 46?7 (How to add something
to an end of a vector? How to get the
first element? The last element?)

Solutions
Question 1. Answer: D

Question 2. Answer: true, false, false,
false, true.

Question 3. Answer: false, true, true,
false.

Question 4. TBD

