
Sample Assignment 3
Discussed on 2020-09-24

Not graded

Question 1 (Storing numbers in a queue)
Data structure std::vector is very popular;
it allows push_back(...) method: you can
add new elements at the end, but not at the
beginning.
Double ended queue (deque) is another data
structure (as fast and efficient as vector); it
allows pushing elements at either end:
push_front(...) and push_back(...).

Source file File1.cpp:

1 #include <iostream>
2 #include <string>
3 #include <deque>
4

5 using namespace std;
6 int main() {
7 deque<int> queue1;
8 int n;
9

10 while (cin >> n) {
11 queue1.push_front(n);
12 }
13

14 string sep; // initialized as empty
15 for (int m : queue1) {
16 cout << sep << m; sep = ",";
17 }
18 cout << endl;
19

20 int head = queue1.at(0);
21 queue1.pop_front();
22 cout << head << " -> ";
23 for (int m : queue1) {
24 cout << m << ",";
25 }
26 }

Input file input.txt:

1 1 3 5
2 2 4 6

What is the output from File1.cpp on this
input?

(A)
1,3,5,2,4,6
6 -> 4,2,5,3,1,

(B)
1,3,5,2,4,6
1 -> 3,5,2,4,6,

(C)
6,4,2,5,3,1
1 -> 3,5,2,4,6,

(D)
6,4,2,5,3,1
6 -> 4,2,5,3,1,

Question 2 (Reading Line by Line)

Source file File2.cpp:

1 #include <iostream>
2 #include <sstream>
3 #include <map>
4 #include <string>
5 #include <vector>
6

7 using namespace std;
8 int main() {
9 map<int, vector<int>> mymap;

10

11 vector<int> vect;
12 string line;
13 while (getline(cin, line)) {
14 istringstream sstr(line);
15 int n;
16 while (sstr >> n) {
17 vect.push_back(n);
18 }
19

20 mymap.insert(
21 make_pair(vect.at(0), vect));
22 vect.clear();
23 }
24

25 map<int,vector<int>>::iterator it=
26 mymap.begin();
27 while (it != mymap.end()) {
28 cout << it ->first << ": ";
29 for (int m : it -> second) {
30 cout << m << ",";
31 }
32 it++; cout << endl;
33 }
34 }

Input file input.txt:

1 1 3 5
2 7 8 9
3 2 4 6

Mark true/false statements about this code:

(A) The output is 3 lines

(B) The output is 1 line

(C) Iterator it visits pairs from mymap in the
same order they were inserted.

(D) Iterator it visits pairs from mymap in a
random order.

(E) Iterator it visits pairs from mymap in in-
creasing order of the key (it -> first).

2

Question 3: This code inserts some ele-
ments in a std::set, then tries to find (el-
ement 5 is there, but 4 is not). Finally, we
iterate over the set in two different ways: as
in C++11 (for-loop syntax for an iterator) or
an older construct with an explicit iterator.

Source file File3.cpp:

1 #include <iostream>
2 #include <set>
3

4 using namespace std;
5 int main() {
6 set<int> myset;
7 myset.insert(11);
8 myset.insert(13);
9 myset.insert(5);

10 myset.insert(7);
11 myset.insert(5);
12 bool b4,b5;
13 b4 = myset.find(4) == myset.end();
14 b5 = myset.find(5) == myset.end();
15 cout << "(b4,b5)=(" << b4 <<
16 "," << b5 << ")" << endl;
17 for (int u: myset) {
18 cout << u << "; ";
19 }
20 cout << endl;
21 set<int>::iterator it;
22 it = myset.begin();
23 while (it != myset.end()) {
24 cout << (*it) << "; ";
25 it++;
26 }
27 }

Mark which statements about this code are
true/false.

(A) 1st line in output is (b3,b4) = (0,1).

(B) Lines 17–19 and 23–26 iterate over myset
in the same way.

(C) Iterator on Lines 17–19 visits elements
in increasing order.

(D) Iterator on Lines 17–19 visits elements
in random order.

3

Question 4 (Sets/Vectors with Custom
Classes)
The code below does the task of EX02: it
reads student data from STDIN; outputs the
smallest and the largest student compared by
age; or by height (if ages are equal).

Source file File4.cpp:

1 #include <iostream>
2 #include <iomanip>
3 #include <set>
4

5 using namespace std;
6 struct Student {
7 int age;
8 double height;
9 Student(int aa = 1, double hh = 1):

10 age(aa), height(hh) {}
11

12 friend istream &operator>>(
13 istream &input, Student &S) {
14 input >> S.age >> S.height;
15 return input;
16 }
17

18 friend ostream &operator<<(
19 ostream &output,
20 const Student &S) {
21 output << "Student(" <<
22 S.age << "," << std::fixed <<
23 std::setprecision(5) <<
24 S.height << ")";
25 return output;
26 }
27

28 friend bool operator<(
29 const Student &left,
30 const Student &right) {
31 return (left.age<right.age) ||
32 (left.age == right.height &&
33 left.height<right.height);
34 }
35 };
36

37 int main() {
38 int n; cin >> n;
39 set<Student> myset;
40 for (int i = 0; i < n; i++) {
41 Student student;
42 cin >> student;
43 myset.insert(student);
44 }
45 cout << *(myset.begin()) << endl;
46 cout << *(--myset.end());
47 return 0;
48 }

Write short answers to these questions:

(A) What happens, if Line 43 is rewritten as
follows: cout << *(myset.end());

(B) How would you overload the compari-
son operation, if you only look at age,
but order by age alphabetically (as in
a dictionary). Namely, age ”17” comes
before age ”2” (since digit ”1” alphabet-
ically precedes digit ”2”). (Just show
how the Lines 31–33 would look, if you
order alphabetically.)

(C) Assume that the class Student had a
destructor. On which line of your code
(if at all) is it called, when you read the
input containing data for a few students
and insert them all in a set.

(D) Assume that you want to use std::vector
instead of a set; and output the first and
the last element you inserted into a vec-
tor. What would you write on Line 43,
Line 45 and 46? (How to add something
to an end of a vector? How to get the
first element? The last element?)

4

Solutions
Question 1. Answer: D

Question 2. Answer: true, false, false,
false, true.

Question 3. Answer: false, true, true,
false.

Question 4. TBD

5

