
Assignment 5. 2020-10-14,
12 minutes

Question 1 (Algorithm to find GCD).
This algorithm is often used to find the great-
est common divisor of nonnegative integers a
and b.

GCD-One(a, b) :
1 if a == 0 :
2 return b :
3 if b == 0 :
4 return a :
5 while b > 0 :

(Remainder when a is divided by b)
6 t = a mod b
7 a = b
8 b = t
9 return a

The worst case time for this algorithm is achieved
when we input Fibonacci numbers (it has to
run the longest relative to the input size).
For example, if a = 144, b = 89, then:

(144, 89) → (89, 55) → (55, 34) →

→ (34, 21) → (21, 13) → (13, 8) → (8, 5)

→ (5, 3) → (3, 2) → (2, 1) → (1, 0).

At the last step a = 1 and b = 0, so it returns
a = 1 which equals gcd(144, 89).
It is known that n-th Fibonacci number

Fn ≈ 1√
5

(
1 +

√
5

2

)n

.

It grows as a geometric progression.
Write the time complexity of finding GCD of
two numbers (a, b) in terms of n, where n is
the total number of digits in numbers a and
b.
Express your answer, using the “Big-
O-Notation”.

Question 2 (Another algorithm for GCDD).
Modify the above algorithm - instead of di-
viding with remainder, we subtract b from a
repeatedly (and we swap a and b, whenever
b > a).

GCD-Two(a, b) :
1 if a == 0 :
2 return b :
3 if b == 0 :
4 return a :
5 while b > 0 :
6 a = a− b
7 if b > a :

(a becomes b and vice versa)
8 swap(a, b)
9 return a

For example, if a = 75, b = 30 (GCD is 15),
we run it like this:

(75, 30) → (45, 30) → (15, 30)swap →

→ (30, 15) → (15, 15) → (0, 15)swap → (15, 0).

Write the time complexity of finding GCD of
two numbers (a, b) in terms of n (where n is
your input length).
Express your answer, using the “Big-
O-Notation”.



Solutions
Question 1. Answer: O(n).
The algorithm GCD-One(a, b) has time com-
plexity O(n).
Intuitively, if we have 100-digit numbers, then
we would need 100k steps for the algorithm
to complete - so it is linear. (Here we assume
that all arithmetic operations take constant
time; the algorithm may take longer, if num-
bers a, b are so large that they exceed 264 or
other CPU register size limit.)
It was told in this problem that the worst-
case complexity is achieved, if both argu-
ments to GCD-Two(a, b) are Fibonacci num-
bers. The lengths of a and b cannot ex-
ceed n digits (in decimal notation), therefore
a, b < 10n. If any of them is the k-th Fi-
bonacci number (e.g. a = Fk, then we would
spend c ·k steps before the algorithm reaches
F0 = 0. We get

Fk ≈
1√
5

(
1 +

√
5

2

)k

< 10n,

(
1 +

√
5

2

)k

<
√
5 · 10n,

k <
ln(

√
5 · 10n)

ln 1+
√
5

2

= c · n.

Therefore, the number of while-loop itera-
tions k is O(n).

Question 2. Answer: O(10n).
The worst case (maximum number of sub-
ractions) for the algorithm GCD-Two(a, b)
happens, if a = 10n − 1 (the largest n-digit
integer having n digits = 9) and b = 1. In
this case we will subtract b from a O(10n)
times.
Note 1: Time complexity should NOT ex-
pressed in terms of actual arguments a and
b, but it only depends on n, where n denotes
the length of its input (total number of digits
of a and b).
Note 2: Answer O(log n) for GCD-One(a, b)
or O(n) for GCD-Two(a, b) would be true,
if the input for a, b is written in unary count-
ing system.

Grading:

• Correct answers (O(n) and O(10n) re-
spectively) –10 points.

• Answers O(log n) and O(n) with some
justification (why remainders are much
faster than subtraction) –7 points.

• O(log n) and O(n) (but without any
justification) –5 points.

• Similar to O(log n) and O(n) (but a, b
used instead of n) –4 points.

• Just O(log n) for the 1st item –2 points.

2


