Assignment 5. 2020-10-14, *12 minutes*

Question 1 (Algorithm to find GCD).

This algorithm is often used to find the *greatest common divisor* of nonnegative integers *a* and *b*.

GCD-ONE(a, b):
\n1 if
$$
a == 0
$$
:
\n2 return b:
\n3 if $b == 0$:
\n4 return a:
\n5 while $b > 0$:
\n(Remainder when a is divided by b)
\n6 $t = a \mod b$
\n7 $a = b$
\n8 $b = t$
\n9 return a

The worst case time for this algorithm is achieved when we input Fibonacci numbers (it has to run the longest relative to the input size). For example, if $a = 144$, $b = 89$, then:

$$
(144, 89) \rightarrow (89, 55) \rightarrow (55, 34) \rightarrow
$$

$$
\rightarrow (34, 21) \rightarrow (21, 13) \rightarrow (13, 8) \rightarrow (8, 5)
$$

$$
\rightarrow (5, 3) \rightarrow (3, 2) \rightarrow (2, 1) \rightarrow (1, 0).
$$

At the last step $a = 1$ and $b = 0$, so it returns $a = 1$ which equals gcd(144, 89). It is known that *n*-th Fibonacci number

$$
F_n \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n.
$$

It grows as a geometric progression.

Write the time complexity of finding GCD of two numbers (a, b) in terms of *n*, where *n* is the total number of digits in numbers *a* and *b*.

Express your answer, using the "Big-O-Notation".

Question 2 (Another algorithm for GCDD).

Modify the above algorithm - instead of dividing with remainder, we subtract *b* from *a* repeatedly (and we swap *a* and *b*, whenever $b > a$).

 $GCD-Two(a, b)$: 1 **if** $a == 0$: 2 **return** *b* : 3 **if** $b == 0$: 4 **return** *a* : 5 while $b > 0$: 6 $a = a - b$
7 **if** $b > a$ if $b > a$: *(a becomes b and vice versa)* 8 *swap*(*a, b*) 9 **return** *a*

For example, if $a = 75$, $b = 30$ (GCD is 15), we run it like this:

$$
(75,30) \rightarrow (45,30) \rightarrow (15,30)_{swap} \rightarrow
$$

$$
\rightarrow (30,15) \rightarrow (15,15) \rightarrow (0,15)_{swap} \rightarrow (15,0).
$$

Write the time complexity of finding GCD of two numbers (a, b) in terms of *n* (where *n* is your input length).

Express your answer, using the "Big-O-Notation".

Solutions

Question 1. Answer: *O*(*n*).

The algorithm GCD -ONE (a, b) has time complexity $O(n)$.

Intuitively, if we have 100-digit numbers, then we would need 100*k* steps for the algorithm to complete - so it is linear. (Here we assume that all arithmetic operations take constant time; the algorithm may take longer, if numbers a, b are so large that they exceed 2^{64} or other CPU register size limit.)

It was told in this problem that the worstcase complexity is achieved, if both arguments to GCD-Two(*a, b*) are Fibonacci numbers. The lengths of *a* and *b* cannot exceed *n* digits (in decimal notation), therefore $a, b < 10^n$. If any of them is the *k*-th Fibonacci number (e.g. $a = F_k$, then we would spend $c \cdot k$ steps before the algorithm reaches $F_0 = 0$. We get

$$
F_k \approx \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^k < 10^n,
$$
\n
$$
\left(\frac{1+\sqrt{5}}{2}\right)^k < \sqrt{5} \cdot 10^n,
$$
\n
$$
k < \frac{\ln(\sqrt{5} \cdot 10^n)}{\ln \frac{1+\sqrt{5}}{2}} = c \cdot n.
$$

Therefore, the number of while-loop iterations k is $O(n)$.

Question 2. Answer: *O*(10*ⁿ*).

The worst case (maximum number of subractions) for the algorithm $\text{GCD-Two}(a, b)$ happens, if $a = 10^n - 1$ (the largest *n*-digit integer having *n* digits = 9) and $b = 1$. In this case we will subtract *b* from *a* $O(10^n)$ times.

Note 1: Time complexity should NOT expressed in terms of actual arguments *a* and *b*, but it only depends on *n*, where *n* denotes the length of its input (total number of digits of *a* and *b*).

Note 2: Answer $O(\log n)$ for GCD -One (a, b) or $O(n)$ for GCD-Two(*a, b*) would be true, if the input for *a, b* is written in *unary counting system*.

Grading:

- Correct answers $(O(n)$ and $O(10^n)$ respectively) –10 points.
- Answers $O(\log n)$ and $O(n)$ with some justification (why remainders are much faster than subtraction) –7 points.
- $O(\log n)$ and $O(n)$ (but without any justification) –5 points.
- Similar to $O(\log n)$ and $O(n)$ (but a, b) used instead of *n*) –4 points.
- Just $O(\log n)$ for the 1st item -2 points.