
Sample Assignment 7
Discussed on 2020-11-05,

Not graded

Question 1 (Polynomial HashCodes for Strings).
You have 4 different ASCII strings: ABCD, ABD, ACD, BCD, and you want to compute Java/Scala-
style hash function and insert them (in this order) into a hash table H with 5 slots: H[0], . . . , H[4].
(A) Compute the (uncompressed) hashcode values for all the 4 string values. Your hashcode
function h1(s) = p(31) (value of a polinomial for argument z = 31), where p(z) is defined as
follows:

p(z) =
L−1∑
i=0

ord(c[i])zL−1−i.

Here L is the length of the string s. By c[i] we denote the ith character of the input string s
(i = 0, 1, . . . , L− 1). Polynomial is computed in a 4-byte integer register; if the integer register
overflows, we only use the last four bytes. In this exercise all the strings are sufficiently short
and the overflow does not happen.
Note. By ord(c) in this polynomial we denote the ASCII code of some character c; these codes
are integers in [0; 255]. (See the ASCII codes: http://www.asciitable.com/.)

(B) Write the arithmetic expression to evaluate h1(ABCD) with the Horner’s method using only
three multiplications and three additions (and no intermediate variables can be stored).

(C) Compute the compressed hash values for the same 4 strings (ABCD, ABD, ACD, BCD) modulo
5. Namely, the compressed hash value is

h2(h1(s)) = h1(s) mod 5.

(D) Draw the four string objects in a hashtable H with 5 cells (H[0], . . . , H[4]).

Note. Here is the pseudocode of the abovementioned string hashing function h1(s) (in Python):

def h1(s):
h = 0
for c in s:

h = (31 * h + ord(c)) & 0xFFFFFFFF
return ((h + 0x80000000) & 0xFFFFFFFF) - 0x80000000

All the manipulation with masks 0xFFFFFFFF etc. is meant to guarantee that h1(s) is always 4
bytes long signed integer (in Python integers are generally longer). Your polynomial computa-
tions will not be affected by these masks (for short strings the value h1(s) is a positive number
that does not cause 4-byte register overflow).

http://www.asciitable.com/


Question 1
(A) Compute the values by hand or use Python pseudocode:

(B) You can use Horner’s method like this:

h1(ABCD) = ((65 · 31 + 66) · 31 + 67) · 31 + 68.

Notice that the characters 'A', 'B', 'C', 'D' have ASCII codes 65, 66, 67, 68 respectively.
In hexadecimal notation, the byte 'A' is 0x41, which equals 4 · 16 + 1 = 65. See http:
//www.asciitable.com/ for details.
Note. If Horner’s method is not used, then a 3rd degree polynomial would take 3 additions and
6 multiplications. This is even more inefficient for longer strings, so we should always use the
Horner’s method (also used in the Python pseudocode on the previous page). Here is the same
polynomial without Horner’s method:

h1(ABCD) = 65 · 31 · 31 · 31 + 66 · 31 · 31 + 67 · 31 + 68.

(C) The compressed hash values are the remainders of numbers 2001986, 64579, 64610 and
65571 when divided by 5 (i.e. they are numbers 1, 4, 0, 1 respectively).

(D) Here is the image with the hashtable (with all the 5 slots/buckets displayed). There is one
collision: two different values map to the same (compressed) value 1. Hashtable is represented
as an array of linked lists. The key ABCD is inserted first, only then the collision with another
key BCD happens (so it becomes the next member in the linked list for the bucket H[1]).

Note. The hashfunction h1(s) is one of the simplest hash functions that is widely used.
See https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode().

2

http://www.asciitable.com/
http://www.asciitable.com/
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()

