
Sample Assignment 9
Not graded

Pseudocode for Quicksort. This variant of Quicksort uses the leftmost element of the input
area as a pivot. It is the same as we have in the lecture slides, but may differ from some other
Quicksort flavors (randomized etc.) that you may encouter in other sources.

Quicksort(A[ℓ . . . r]) :
1 if l < r :
2 i = ℓ (i increases from the left and searches elements ≥ than pivot)
3 j = r + 1 (j decreases from the right and searches elements ≤ than pivot.)
4 v = A[ℓ] (v is the pivot.)
5 while i < j :
6 i = i+ 1
7 while i < r and A[i] < v :
8 i = i+ 1
9 j = j − 1
10 while j > ℓ and A[j] > v :
11 j = j − 1
12 A[i] ↔ A[j] (Undo the extra swap at the end)
13 A[i] ↔ A[j] (Undo the extra swap at the end)
14 A[j] ↔ A[ℓ] (Move pivot to its proper place)
15 Quicksort(A[ℓ . . . j − 1])
16 Quicksort(A[j + 1 . . . r])

(A) Run this pseudocode for one invocation QuickSort(A[0..11]), where the table to sort is
the following:

13, 0, 23, 1, 8, 9, 29, 16, 8, 24, 6, 11

Draw the state of the array every time you swap two elements (i.e. execute A[k1] ↔ A[k2] for
any k1, k2).
(B) Continue with the first recursive call of QuickSort() (the original call QuickSort(A[0..11])
is assumed to be the 0th call of this function). Draw the state of the array every time you swap
two elements.
(C) Decide which is the second recursive call of QuickSort() and draw the state of the array
every time you swap two elements. Show the end-result after this second recursive call at the
very end.



Solution.
Your answer can be simple lists of numbers (without any grid lines or additional markings).
Just try to keep the lists of numbers aligned.
(A)

Figure 1: Swaps during the 0th call.

(B) Since this example contains two elements equal to 8, we added subscripts to them (to show
clearly, where every one is being swapped). As integer numbers they are fully identical to the
Quicksort algorithm. (Still, the Quicksort algorithm does redundant swaps on them.)

Figure 2: Swaps during the first recursive call.

(C) Notice that the second recursive call happens within the first recursive call (sorting the left
side of the left half).

Figure 3: Swaps during the second recursive call.

2


