
Assignment 11
Published on 2020-12-05,

Estimated Time: 30 minutes,
Max.grade 10‰

1 Introduction
If you know how to do topological sorting
using the DFS traversal (recording their dis-
covery and final visit times), you can imme-
diately start with the items in Section 2. You
can also read an inspirational slide deck on
TOpological Sorting from University of Cal-
ifornia, Davis:
https://www.cs.ucdavis.edu/~bai/ECS122A/
Notes/DFSapps.pdf. Or (Goodrich2011, p.633),
Section 13.4.3 Directed Acyclic Graphs.
In the example below we show the following:

• Draw the visual representation from its
adjancency list representation.

• Add two more edges to the graph.

• Run the DFS to check, if it is still a
DAG (directed acyclic graph). We do
that DFS in a repeatable order (always
pick the lexicographically smallest ver-
tex, if there is a choice).

• Use the DFS visiting order (“final” times-
tamp) to create the topological sorting.

1.1 Sample DAG
Mr. Bunbury dresses every morning accord-
ing to certain rules: He always puts on his
Trousers after Underpants, his Sweater after
his Belt. He also puts on his Face-mask af-
ter the Sweater (otherwise it would displace
the Face-mask as it is pulled over the head),
glasses are put on after the Face-mask, since
otherwise they get foggy, and so on.
All the rules are shown in graph G Figure 1
(it is also the adjecency list representation;
it shows all the before-after binary relation-
ships). Square cells that are crossed diag-
onally show null-pointers (i.e. they denote
where the adjacency lists end). Mr. Bunbury
has figured how he can get dressed according

Figure 1: Adjacency List Representation

to these rules. To make it even more intu-
itive, he made a visual representation of the
rules as in Figure 2.
Somebody tells Mr. Bunbury that his Coat
and Boots may be contaminated with viruses,
but hands should be clean as he applies the
Face-mask (this adds two red arrows to the
diagram in Figure 2). At this point Mr. Bun-
bury needs advice – one feasible way to get
dressed by topologically sorting the clothing
items (or an evidence of a contradiction: a
loop of arrows that prove that the updated
graph is not a Directed Acyclic Graph any-
more and it cannot be sorted).

Figure 2: Graph G visualized

1.2 DFS Traversal Example
The Depth-First-Search traversal is described
by a recursive algorithm having this pseu-
docode:

https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/DFSapps.pdf
https://www.cs.ucdavis.edu/~bai/ECS122A/Notes/DFSapps.pdf


DFS(G)
1 for each vertex u ∈ G.V :
2 u.color = white
3 u.parent = nil
4 time = 0
5 for each vertex u ∈ G.V :
6 if u.color == white :
7 DFS_Visit(G, u)

The loop on Line 5 (see the pseudocode of
DFS(G) above) visits vertices u ∈ G.V in
the lexicographic order. (It may also happen
that DFS_Visit(G, u) is invoked just once,
if a single DFS call is enough to visit every
vertex and to turn it black.
Here is the code of DFS_Visit(G, u) (the
DFS-visit for vertex u ∈ G.V ). Please pay
attention to the two parameters u.d (discov-
ery time – when the DFS traversal enters u
for the first time) and u.d (finish time – when
the DFS traversal leaves u forever, since u is
visited along with all its freshly discovered
child vertices).

DFS_Visit(G, u)
1 time = time + 1

(white vertex u was just discovered)
2 u.d = time
3 u.color = gray

(explore (u, v1), (u, v2), . . .)
4 for each v ∈ G.Adj[u] :
5 if v.color == white :
6 v.parent = u
7 DFS_Visit(G, u)

(vertex u now fully processed)
8 u.color = black
9 time = time + 1
10 u.f = time

Once again, we assume that the white neigh-
bors of u (for example, v1, v2) are visited in
their lexicographic order. These assumptions
make DFS traversal repeatable (without such
assumption there are typically multiple ways
how to do DFS-style visits).
Let us run this DFS pseudocode on the cloth-
ing graph. We start by visiting the vertex
“Belt” (as it is alphabetically first), so its
discovery time u.d = 1. After that we visit
all its neighbors (in their alphabetical order,

if there are several). When we finish process-
ing “Belt”, we find the next vertex (alphabet-
ically first among those unvisited or having
color white), and so on. The result of these
activities is shown in Figure 3 (each vertex
in G has a green pair (d/f) that shows the
discovery/finish time).

Figure 3: Graph G with DFS discov-
ery/finish

1.3 Getting Topological Sorting
Topological_Sort(G)
(result accumulates in reverse order)

1 S = Stack.Empty()
2 call DFS(G)
3 for each u ∈ G.V :
4 as soon as u.f (finish time) is assigned :
5 S.push(u)
6 return S

We can look at Figure 3 and list all the nodes
in the reverse order of their finish times (their
values are 20, 18, 16, 14, 12, 11, 10, 9, 7, 4), we
would get the following topological order (one
feasible way how Mr. Bunbury can dress him-
self). For every clothing item we also specify
the time value when that vertex was finished
(painted black).

(20) Underpants; (18) Trousers;
(16) Socks; (14) Shirt;
(12) Belt; (11) Sweater;
(10) Face mask; (9) Glasses;
(7) Boots; (4) Coat.

The sequence shows that DFS (and the for-
mal rule that always picks the lexicographi-

2



cally smallest item) causes a reasonable ad-
vice to get dressed.

1.4 Graphs that are Not DAGs
Topological sorting is not always doable – if
there is any loop in the graph, it is no longer
a DAG (a directed acyclical graph). During
the DFS traversal it is possible to verify, if a
graph is a DAG or not.
Let us remember, how all directed edges fall
into 4 categories as we perform DFS:

Tree/Discovery edges
All the edges (u, v) visited by DFS as
the depth-first forest is built (see Line
4 in pseudocode DFS_Visit(G, u)).

Back edges
Edges connecting a vertex u with its
ancestor v in some DFS tree. (If a
cyclical graph contains a loop (v, v) from
a vertex to itself, it is considered a back
edge as well.)

Forward edges
Non-tree edges (u, v) connecting u to a
descendant v in some DFS tree.

Cross edges
All the other edges – a cross edge con-
nects a vertex to a vertex that is nei-
ther its ancestor nor its descendent

Statement. A graph is a DAG iff there is no
back edge: all edges during the DFS traversal
are either discovery edges, forward edges or
cross edges.
Example. Consider the graph in Figure 4.
It has a back-edge (D,A) which completes
a cycle (in this example it is made from 3
edges: (A,B), (B,D), (D,A))
To identify directed graphs that are not acycli-
cal, modify Line 4 in the pseudocode of
DFS_Visit(G, u): Before adding the new
discovery/tree edge (u, v), check, if u has any
neighbor v∗ that currently has color gray;
this would mean that v∗ is an ancestor of u
and (u, v∗) is a back-edge, which is forbid-
den. (Even in case when v∗ = u, and the
edge (u, v∗) is a loop to itself, the check would
reveal that u has color gray.)

Figure 4: A graph with a cycle

2 Problem
We start with the graph shown in Figure 5.

Figure 5: Adjacency list representation

(A) Draw the visual representation of the
graph, each vertex is a circle (with string val-
ues "0" to "9") inside. If there is a directed
edge from one vertex to another, draw it as
an arrow.
(Figures 1 and 2 show how this transforma-
tion was made for the clothing graph.)

(B) Compute the following 4 numbers from
a, b, c (your last Student ID numbers):

T = 3 · ((a+ b) mod 4)
U = 3 · ((b+ c) mod 3) + 1
V = 3 · ((c+ a) mod 3) + 1
W = 3 · ((a+ b+ c) mod 3) + 2

By (x mod y) we denote the remainder as x
is divided by y. Add to the original graph
two new directed edges (T, U) and (V,W ).

3



(For example, if T = 5 and U = 7, then
there should be an arrow from vertex "5" to
vertext "7". If such an edge already exists,
do not add anything.)
Draw the new graph; show the newly added
edges in bold or colored differently.

(C) Run the DFS traversal algorithm on the
graph just obtained in (B), mark each ver-
tex with the pair of numbers d/f, where the
first number d is the discovery time, and the
second number f is the finishing time. (You
will use all the numbers from 1 to 20: every
number will be used exactly once.) It should
take exactly 20 steps to do DFS enters/exits
in a directed graph with 10 vertices.
If there are multiple ways how to pick a ver-
tex to visit next, always pick the vertex with
the smallest number. (Otherwise your re-
sults cannot be properly verified.)

(D) If the graph you got in (B) after adding
new edges is not a DAG anymore, please say
so in your answer; indicate what vertex you
visited as you discovered that a back edge
exists. And also show which is the cycle.
If the graph is a DAG, produce a topolog-
ical sorting of its vertices (the algorithm is
explained in Section 1.4 above).

Note. Your solution should contain two di-
rected graphs ((A) and (B)), one directed
graph with vertices anotated with d/f (in
(C)) and EITHER information on the back
edge+cycle OR topological sorting of the ver-
tices.

4


	Introduction
	Sample DAG
	DFS Traversal Example
	Getting Topological Sorting
	Graphs that are Not DAGs

	Problem

