Assignment 12
Published on 2020-12-06,

Estimated Time: 30 minutes,
Maz.grade 10%o

1 Strongly Connected Com-

ponents

One of the multiple practical applications of
a DFS traversal of a directed graph is find-
ing strongly connected components (strongly

connected graphs are defined in (Goodrich2011,

p.626)), the relevant algorithm is known as
Kosaraju’s algorithm. See https://bit.1ly/
31I20ec, https://bit.1ly/3mNU21a.
Definition. A subset of vertices in a di-
rected graph S C G.V makes a strongly con-
nected component, iff for any two distinct
vertices u,v there is a path u ~» v (one or
more and also another path v ~» u that goes
back from v to ).

If you can travel only in one direction (say,
from u to v), but cannot return, then w,v
should be in different strongly connected com-
ponents. (Same thing, if v and v are mu-
tually unreachable.) Moreover, every vertex
is strongly connected to itself — so even in
the worst case a graph with n vertices would
have at most n strongly connected compo-
nents (containing one vertex each).

Figure [l| shows an example of a graph with
n = 5 vertices having 3 strongly connected
components. Next to that graph is the trans-
posed graph GT where all the edges are re-
versed.

Figure 1: Graph G and GT

1.1 Kosaraju’s algorithm

There is a way to find strongly connected
components in an arbitrary graph by run-

ning DFS twice (i.e. it works in linear time

O(n+m)).

STRONGLY__CONNECTED(G)
(compute all finishing times u.f)
1 call DFS(G)
(GT' is transposed G, all edges reversed)
2 compute GT
(visit vertices in decreasing u.f order)
call DFS(GT)
for each tree T in the forest DFS(GT)
Output 7" as a component

Ot = W

To see how this works, we can run it on the
example graph shown earlier. After the DFS
on graph G is run, we get the finishing times
for the vertices 0,1,2,3,4 (all shown in red
on the left side of Figure B) After that we
replace G by GT (to the right side of the same
figure), and assign priorities in the decreas-
ing sequence of u.f (the finishing times when

running DFS(G)).

oz

34 110 6/9 11-4=7 11-10=1 11-9=2

D=0 +3) 0'0 (3)
/
/
@ @ ®
11-5=6 11-8=3

Figure 2: DFS on G and GT

To make this reverse order obvious, we assign
new priorities to the vertices in G*. The new
priorities in GT are the following:

e Vertex "0" has priority 11 — 10 = 1.
o Vertex "1" has priority 11 —4 = 7.
o Vertex "2" has priority 11 — 5 = 6.
o Vertex "3" has priority 11 — 9 = 2.
e Vertex "4" has priority 11 — 8 = 3.

Now run DFS(GT). Tt turns out that the
DFS algorithm starts in the vertex "0" once
again (since it was finished last in DFS(G)).
But unlike the DFS algorithm in G itself (it
produced just one DFS tree), we get a DFS
forest with 3 components (tree/discovery edges
shown bold and black in Figure ).


https://bit.ly/3lI20ec
https://bit.ly/3lI20ec
https://bit.ly/3mNU2la

o {707,717,72"} (DFS tree has root ”0").
o {73"} (DFS tree has root ”3").
o {747} (DFS tree has root 74”).

They represent the strongly connected com-
ponents in G (they are also strongly con-
nected in GT).

2 Problem

We start with the graph shown in Figure B

\\\

/

~ |
\'\\ ]
|
|
@ A (
. 3 |
\ Vo /
\ ) /
™~ \ /
. \ |/
v ‘ /
|
|
;"I
e 3

Figure 3: Graph diagram

(A) Compute the following three numbers
from a, b, ¢ (your last Student ID numbers):

U=2-((a+b) mod5)
V=2 ((b+c)modb)+1
W =2-((c+a)mod5)+1

By (z mod y) we denote the remainder as x
is divided by y. Add to the original graph
two new directed edges (U,V) and (U, W).
(For example, if U =2,V =7, W =1 then
add two outgoing edges from "2" to "5" and
"1" respectively. If an edge exists, do not
add anything.)

Draw the new graph; show the newly added
edges in bold or colored differently.

(B) Run the DFS traversal algorithm on the
graph GG. Mark each vertex with the pair of
numbers d/f, where the first number d is the
discovery time, and the second number f is
the finishing time.

(C) Draw the transposed directed graph (same
vertices, but each arrow points in the oppo-
site direction). Run the DFS traversal algo-
rithm on GT. Make sure that the DFS outer

loop visits the vertices in the reverse order by
u.f (the finishing time for the DF'S algorithm
in step (B)). In this case you do not produce
the discovery/finishing times once again, just
draw the discovery edges used by the DFS on
GT — you can highlight them (show them in
bold or use a different color).

(D) List all the strongly connected compo-
nents (they are the separate pieces in the for-
est obtained by running DFS on G7T).



	Strongly Connected Components
	Kosaraju's algorithm

	Problem

