
Assignment 13
Published on 2020-12-06,

Estimated Time: 30 minutes,
Max.grade 10‰

1 Dijkstra’s Algorithm
(Goodrich2011, p.640) defines Dijkstra’s al-
gorithm. See also https://bit.ly/2JSXqMU.
It is an efficient algorithm; it requires O((m+
n) log2 n) time, if we use priority queues; here
m is the number of edges and n is the number
of vertices in a graph.
In this exercise you do not need to implement
a priority queue; assume that you can always
pick the vertex with the smallest distance
and add it to the set S of visited vertexes
(those having distances already computed).

2 Problem
We start with the graph shown in Figure 1.

Figure 1: Graph diagram

The following edges (A,B), (E,C), (D,C)
have weights a + 1, b + 1, and c + 1 respec-
tively (here a, b, c should be replaced by the
digits from your Student ID). Vertex A will
be your source vertex. (You can assume that
the distance from A to itself is 0; initially
all the other distances are infinite, but then
Dijkstra’s algorithm relaxes them).

(A) Redraw the graph Figure 1, replace the
edge weights a + 1, b + 1, and c + 1 by your
values of a, b, c.

(B) Run the Dijkstra’s algorithm; create a
table showing how distances to A,B,C,D,E

change as the relaxations are performed. At
every iteration highlight which vertex (among
those not yet finished) has the minimum dis-
tance. Add it to the set S of finished vertices
(the set S will have 0 in the very first itera-
tion; after that it will grow by one vertex at
a time).

(C) Summarize the result: For each of the
5 vertices tell what is its minimum distance
from the source. Also tell what is the short-
est path how to get there.

https://bit.ly/2JSXqMU

	Dijkstra's Algorithm
	Problem

