
Sample Final. 2020-12-16.
This sample (unlike the actual exam) is

NOT scaled to fit in 120 minutes.

Summary. This is a sample exam, it only gives an
approximate idea regarding the question types and
their difficulty. The actual exam may cover some
other topics (it may also include things taught before
the midterm exam).
Final exam emphasizes certain things that are impor-
tant for further IT subjects (such as Time Complex-
ity, Graph Algorithms) and also the knowledge used
in practical programming (using standard libraries
and ensuring integrity of data structures and their
representation invariants).

Question 1 (Time Complexity).
(A) We need a sorting algorithm that would
order all pairs of integers (x, y) by the first
number x (and by the second number y, if
the first numbers in the pair are equal). For
example (1, 100) < (2, 10) < (2, 20) <
Which comparison function can be passed as
a parameter to the sorting method sort(...)
on Line 38.
(B) As we know, we can define various ways
how compare objects. Are there any math-
ematical properties that a comparison algo-
rithm Comp(...) should satisfy to be passed as
a parameter to a sorting algorithm like the
one above? (Please list just the most general
properties that do not depend on the object
types to be sorted and the particular order-
ing that you need.)
(C) What is the time complexity of the sort-
ing algorithm shown on Line 18–32 of the
code? Express your answer as O(g(n)), where
n is the length of the input array.
(Optionally, you can also name the algorithm,
if you recognize it.)

1 struct Pair { int x; int y;};
2

3 bool CompA(Pair p1, Pair p2) {
4 return (p1.x <= p2.x) ||
5 (p1.y < p2.y);
6 }
7

8 bool CompB(Pair p1, Pair p2) {
9 return (p1.x < p2.x) ||

10 (p1.y < p2.y);
11 }
12

13 bool CompC(Pair p1, Pair p2) {
14 return (p1.x < p2.x) ||
15 (p1.x == p2.x && p1.y < p2.y);
16 }
17

18 void sort(Pair arr[], int n,
19 bool (*f)(Pair, Pair)) {
20 int i, j;
21 Pair key;
22 for (i = 1; i < n; i++) {
23 key = arr[i];
24 j = i - 1;
25 while (j >= 0 &&
26 (*f)(key, arr[j])) {
27 arr[j + 1] = arr[j];
28 j = j - 1;
29 }
30 arr[j + 1] = key;
31 }
32 }
33

34 int main() {
35 Pair arr[] = {{12,2},
36 {6,1},{13,1},{5,100},{6,1}};
37 int n=sizeof(arr)/sizeof(arr[0]);
38 sort(arr,n,CompA);
39 }

Question 2 (Hashing).
Assume that you have to create an unordered
set of very large integers. You want to store
them in a hashtable with exactly 10 buckets.
You can use either of the following two hash
functions:

h1(n) = (17 · n) mod 10,

h2(n) = n4 mod 10.

Assume that the numbers ni that are stored
in the unordered set (and serve as inputs to
the hash function h1 and h2) are uniformly
distributed in the interval [1; 10100] and you
insert a large number of values.
(A) How many hash buckets will receive val-
ues in case of h1(n)? In case of h2(n)?
(B) Which hash buckets will receive most of
the values? For both h1(n) and h2(n) specify,
which hash bucket is the fullest and specify
the percentage of inserted values that will ar-
rive to that bucket. (If several hash buckets
are expected to be equally full, you can spec-
ify any one of them.)
(C) Which hash function would be more ef-
ficient (ability to find set elements faster)?

Question 3 (Representation Invariants).
(Note. For most data structures covered in this course
we defined the representation invariants: Proper-
ties that need to be preserved as we manipulate and
modify the data. Programmers may inadvertently
break the representation invariants leading to un-
predictable behavior of some built-in data structures
and standard libraries.)

1 #include <iostream>
2 #include <vector>
3 #include <map>
4 #include <string>
5

6 using namespace std;
7 int main()
8 {
9 vector<int> alice{1, 2, 4};

10 vector<int> bob{7, 8, 9, 10};
11 vector<int> eve{1, 2, 3};
12

13 map<vector<int>,string> m;
14 m.insert({alice, "alice"});
15 m.insert({bob, "bob"});
16 m.insert({eve, "eve"});
17 cout<<"size="<<m.size()<<endl;
18 cout<<alice.at(2)<<endl;
19 eve.at(2) = 5;
20 cout<<alice.at(2)<<endl;
21 cout<<(m.at(alice))<<endl;
22 cout<<(m.at(eve))<<endl;
23 cout<<"size2="<<m.size()<<endl;
24 }

(A) What operations should be supported
by the datatype vector so that it can serve
as keys in a map m?
(B) What causes the program to crash?

2

Question 4 (Graph theory task).
Definition. An undirected graph is called
bipartite, iff the set of vertices V can be di-
vided into two disjoint sets V1 and V2 so that
every edge connects a vertex in V1 to a vertex
in V2 (and there are no edges from V1 to V1

or from V2 to V2).
Equivalently, a bipartite graph is a graph
that does not contain any odd-length cycles.
See https://bit.ly/2JZrvek.

There is an (undirected) graph with vertices
{A,B,C,D,E, F,G,H} represented by the
following adjacency matrix:

A

B

C

D

E

F

G

H

A

−
B

0

C

0

D

0

E

0

F

1

G

0

H

1
0 − 0 0 0 1 1 0
0 0 − 0 1 0 0 1
0 0 0 − 0 0 1 0
0 0 1 0 − 1 0 1
1 1 0 0 1 − 0 0
0 1 0 1 0 0 − 0
1 0 1 0 1 0 0 −

(A) Draw the visual representation of this
graph (vertices are circles labeled with let-
ters A . . .H); edges are segments connecting
these vertices.
(B) Run the BFS traversal on this graph
starting in vertex A. Order the vertices by
their level in the BFS tree. In every level visit
the child vertices alphabetically. Mark the
BFS tree edges bold (or in different color),
and also draw the cross edges (not bold or
dashed).
(C) Check, if the graph is bipartite. You can
use the levels and discovery/cross edges cre-
ated during the BFS traversal, if necesssary.

Question 5 (Sequences, MST, etc.).
Consider the following subset of airports and
travel times.

Origin Destination Travel Time
Riga Frankfurt 120 min
Frankfurt Riga 120 min
Frankfurt London 60 min
London Frankfurt 60 min
London Edinburgh 45 min
Edinburgh London 45 min
London Paris 90 min
Paris London 90 min
Paris Frankfurt 120 min
Frankfurt Paris 120 min

Passengers are divided into three groups E,
F , B (Economy class, First class and Busi-
ness class respectively). These enter and exit
the plane in this order: first B, then F , then
E. Within each group passengers enter and
exit in the last-in-first-out manner.
Consider the following example. 5 passengers
arrive to the check-in desk of a flight in the
following order:

E1, B1, E2, F1, F2.

In this case they are boarded in the plane like
this:

B1, F1, F2, E1, E2.

They exit the plane like this:

B1, F2, F1, E2, E1.

If several passengers have flight with several
connections, assume that they check in at the
next flight in the same order in which they
exited the previous one.
(A) Create an undirected graph G represent-
ing all the
Find all the minimum spanning trees of G. If
the length of the flight is the weight of each
edge, find the minimum spanning tree with
least weight.
(B) Consider the following order how pas-
sengers arrive in Riga check-in desk:

B1, B2, F1, E1, F2, B3, E2, F3, E3.

They all go to Edinburgh (and change flights
at Frankfurt and London). London to Edin-
burgh flight has no First class (Business and

3

https://bit.ly/2JZrvek

First class passengers are boarded together
in whichever order they arrive at the check-
in desk.)
Write the passenger queues for the following:

1. Boarding order in Riga

2. Exit order in Frankfurt

3. Boarding order in Frankfurt

4. Exit order in London

5. Boarding order in London

6. Exit order in Edinburgh

(C) Using Stack and/or Queue ADT meth-
ods (push, pop, enqueue, dequeue) write pseu-
docode to get the exit order in Frankfurt
(from the original order how the passengers
arrive at the check-in desk in Riga).
(D) Now change travel time from Edinburgh
back to London: it is now 50 minutes (in-
stead of 45 minutes because of strong wind).
All the other travel times remain the same.
Give the adjacency matrix of the graph G of
all the flights. A vertex is a city and a di-
rected edge c1 → c2 represents a flight from
city c1 to city c2.
(E) Using the <map> STL, write the contents
of the int main() { ... } function that
does the following things:

• Creates an empty map called Europe,
with strings as keys and integers as val-
ues.

• Adds 5 keys, the first letter of every
city, all with value 1.

• Outputs the dictionary as a sequence
of key:value separated by a space

• Changes the value of key L to 0.

• Changes the value of key E to 0.

• Outputs the dictionary as a sequence
of key:value separated by a space

4

