
Final Exam. 2020-12-17.
120 minutes.

Question 1 (Using STL).
There is a datatype Student to store student
data. Students are not allowed to change
their birthdates and their names while study-
ing (birth shows how many days separate
January 1, 1970 and their birthday).
You want to store these students in an STL
data structure unordered_set that would al-
low to iterate over them (and also insert new
students or remove them once they gradu-
ate).
This STL class requires that you implement
a hashing function and an equals operator.
In this task you will write your own hash-
ing function (and also evaluate, if other hash
functions are good for this task).
(A) Write your own hash function for the
class Student. It should use exactly abc+ 1
hash buckets, where a, b, c are the last 3 dig-
its of your Student ID. (For example, if your
Student ID ends with 011, then you should
use 12 buckets.)
Your hashfunction expression can use any of
the following:

1. Five integer arithmetic operators a+ b,
a− b, a ∗ b, a/b, a%b.

2. Six kinds of bitwise operators; see https:
//bit.ly/37pXihp (AND, OR, XOR,
NOT, left shift and right shift).

3. std::hash functions for the types int,
double, string (see examples below).

(B) Find, if any of the following expressions
can be used as hash functions for the struct
type Student, if substituted in Line 24. If
they are bad, specify the reason why.

/* EXPR 1 */
(st.birth % 7) + st.name.length();

/* EXPR 2 */
hash<int>{}(st.birth) +
hash<double>{}(st.weight);

/* EXPR 3 */
hash<int>{}(st.birth) ^
hash<string>{}(st.string);

/* EXPR 4 */
hash<int>{}(st.birth) &
hash<string>{}(st.string);

Here is the code to surround hash functions
in this problem (see placeholder on Line 24).

1 #include <iostream>
2 #include <unordered_set>
3 #include <string>
4

5 using namespace std;
6

7 struct Student {
8 int birth;
9 double weight;

10 string name;
11 };
12

13 bool operator== (Student const& lhs,
14 Student const& rhs) {
15 return (lhs.birth == rhs.birth) &&
16 (lhs.name == rhs.name);
17 }
18

19 // wrap the hash functor
20 struct Hash {
21 size_t operator()
22 (const Student &st) const {
23 unsigned hashValue =
24 /* YOUR EXPRESSION HERE */;
25 cout <<"h="<<hashValue<<endl;
26 return hashValue;
27 }
28 };
29

30 int main() {
31 unordered_set<Student,Hash> set;
32 Student s1 = {12, 3.14, "Alex"};
33 Student s2 = {13, 6.E23, "Dina"};
34 set.insert(s1);
35 set.insert(s2);
36 }

https://bit.ly/37pXihp
https://bit.ly/37pXihp

Question 2 (Time Complexity).

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9



v0

−
v1

1

v2

0

v3

0

v4

0

v5

1

v6

0

v7

0

v8

0

v9

0
1 − 0 0 0 0 0 1 1 0
0 0 − 1 0 0 0 0 1 0
0 0 1 − 0 1 0 0 0 0
0 0 0 0 − 1 0 0 0 1
1 0 0 1 1 − 1 0 0 0
0 0 0 0 0 1 − 1 0 0
0 1 0 0 0 0 1 − 0 1
0 1 1 0 0 0 0 0 − 0
0 0 0 0 1 0 0 1 0 −


(A) Assume that a, b, c are the last 3 dig-
its of your Student ID. Find (vc, vd) ∈ E –
the smallest integer d ̸= c for which there is
an edge (vc, vd) in the graph defined by the
adjacency matrix above.
Run the BFS traversal algorithm on the graph
G′ that remains, if you remove edge (vc, vd)
from the original graph. Order the vertices
by their level in the BFS-tree. Show the BFS
discovery edges bold (or different color) so
that they are distinguishable from the cross
edges.
(B) Find, if there is a path from vc to vd in
G′ (where the edge (vc, vd) is removed). If
there is such a path, find its length.
(C) Consider the following pseudocode to
find the shortest cycle in a graph G = (V,E).
Assume that the graph G is a large one, and
it has n vertices (|V | = n) and m edges
(|E| = m). Describe the time complexity of
this pseudocode in terms of variables m and
n. Use the Big-O notation.
Namely, suggest the best (the slowest grow-
ing) f(m,n) such that the total number of
steps (used for this algorithm itself and also
for all the BFS traversals used by it) is
O(f(m,n)) in the worst case. Explain your
answer.

ShortestCycle(G = (V,E)) :
(initially the cycle length ℓ is ∞)

1 ℓ = ∞
(consider every edge of G)

2 for each (v, w) ∈ E :
(remove edge (v, w) from G)

3 G′ = (V,E − {(v, w)})
4 Run BFS starting in v

(is w still reachable from v?)
5 if w is in the same BFS-tree as v

(find the shortest path, add 1)
6 let d = dist(v, w) + 1

(if shorter than the best cycle so far)
7 if d < ℓ

(save the length of the shortest cycle)
8 ℓ = d
9 return ℓ

2

Question 3 (Splay trees).

Figure 1: Intial Tree

(A) You have a Binary Search Tree in Fig-
ure 1. Insert two 2-digit numbers: ab and
also bc as in a splay tree. (For example,
if your Student ID ends with 789, then the
numbers are 78 and 89).
For each insert show the following:

• How the tree looks after the insert, but
before splaying.

• How the tree looks after the splaying
(and how many zig-zig, zig-zag and/or
zig operations you applied).

(B) Could the initial 6-node tree appear as
a result of six successive node inserts (with
splaying upon every insert)? If so, specify the
sequence of six insert commands that would
create the tree in Figure 1.

Question 4 (Graph Algorithm).

Figure 2: Paths in a Jungle

The graph with vertices A,B,C,D,E, F (Fig-
ure 2) shows the available paths in a jun-
gle. Each edge on this graph displays the
probability that a traveler will be bitten by
a malaria mosquito and will be infected. As-
sume that mosquito bites are independent
(the event of being bitten on one edge does
not affect the probability of being bitten on
a subsequent edge). Edges AB, AC, AD
are marked with probabilities a/10, b/10 and
c/10, where abc is your Student ID number.
(A) Find the best path from node A to node
F such that the probability to be never bitten
is the highest.
(B) Describe a method (as a pseudocode or a
precise description) how to compute the best
path in an arbitrary graph G = (V,E) (given
start and end vertices), if the probabilities to
be bitten are known for every edge.
(C) Assume that you have Dijkstra’s short-
est path algorithm (available as a library func-
tion): It can find the shortest path between
any vertices in a weighted undirected graph.
You also have the graph G = (V,E) for the
“mosquito task” defined above with proba-
bilities p(v,w) ∈ [0; 1] of being bitten for every
edge (v, w) ∈ E.
Describe graph and edge weights that you
would input into the Dijkstra’s algorithm li-
brary function so that it outputs the best
path for your “mosquito task”. (You are al-
lowed to modify the input graph itself and
also assign any weights you want before pass-
ing them into the Dijkstra’s algorithm.)

3

