
Midterm. 2020-10-22,
100 minutes (9:00 – 10:40)

Question 1.
There is a 2-dimensional array arr of size n
by n; its elements are integer numbers (each
number contains no more than n digits in its
decimal representation).
You are given this C++ code with function
main() calling function fun().

1 int fun(int row) {
2 int count = 0;
3 for (int col=0; col<n; col++) {
4 while (arr[row][col]>0) {
5 arr[row][col] /= 2;
6 count++;
7 }
8 }
9 return count;

10 }
11

12

13 int main() {
14 for (int row=0; row<n; row++) {
15 cout << fun(row);
16 }
17 }

Analyze the time complexity of this algo-
rithm “inside out”:

(A) Estimate with some O(g(n)) the time
spent on a single iteration of the loop in
Lines 5-6. (How fast one can run these
lines just once.)

(B) Estimate with some O(g(n)) the time
spent on the loop Lines 4-7 (for one spe-
cific pair of row,col).

(C) Estimate with some O(g(n)) the time
spent in the outer loop on Lines 3-8.
(And also in a single call of fun(...).)

(D) Estimate the time spent in the loop on
Lines 14-16.

Note. We use integer division in this algorithm; for
example 7/2 equals 3 and 1/2 equals 0. So it will
eventually stop.

Question 2.

Definition of Big-O:
Real-valued function with natural arguments
f(n) is in O(g(n)) iff there exist C, n0 > 0
such that

|f(n)| ≤ C · |g(n)|,

whenever n > n0.

(A) Use the definition of Big-O Notation to
prove or to disprove that f(n) = 100n2+
1
4
n3 is in O(n3).

(B) Use the definition of Big-O Notation to
prove or to disprove that f(n) = (log2 n)

2

is in O(log2 n).

The reasoning should either provide the ex-
amples of C, n0 that satisfy the definition for
any n; or a method that for any given C, n0

finds find n such that the definition is not
satisfied.

Question 3.
Consider the Queue implementation from https:
//bit.ly/35n7bKd.
Denote a, b, c to be the last 3 digits of your
Student ID, and compute the following num-
bers:

• F = ((a+ b+ c) mod 3) + 2

• x1 = (a+ b+ c) mod 10

• x2 = ((a+ b) · 2) mod 10

• x3 = ((b+ c) · 3) mod 10

• x4 = ((c+ a) · 7) mod 10

The queue Q is implemented as an array of
size N = 6; its elements have indices from
{0, 1, 2, 3, 4, 5}.
Initially the queue parameters are these:
Q.front = F,
Q.length = 4,
Q.size = 6.
And the content of the array is the following:

Somebody runs the following code on this
queue:

https://bit.ly/35n7bKd
https://bit.ly/35n7bKd

Q.enqueue(x1)
Q.enqueue(x2)
Q.dequeue()
Q.dequeue()
// show the state of Q
Q.enqueue(x3)
Q.enqueue(x4)
Q.dequeue()
// show the state of Q

After Line 4 (and at the very end) show the
current state of the queue Q. The state should
display the content of the array and also the
values of Q.front and Q.length.
You can use shading, if it helps to visualize
the array cells that are not currently used by
your queue.
Note. Painting something gray is not required (since
front/length indicate the state of your queue any-
way). But painting cells gray may be helpful, if you
want to visualize where your queue has the useful val-
ues (and what is some old garbage – you can shade
it over).

Question 4.
Introduction. Binary trees are often represented
as arrays (where the array starts with the root node;
followed by all the other nodes, displayed layer by
layer. If any child of a node in this tree is missing, it
is replaced by Λ (capital Lambda denoting an empty
tree) in the array. Once we reach the last non-empty
node in the tree, this is the last element of the array.
For example, the binary tree shown in this picture:

Figure 1: Example binary tree.

is represented by the following array:

int a[] = {1, 2, 3, 7, Λ, 5};

Problem. Assume that you have a binary
tree that is represented by the following ar-
ray:

int a[] = {1, 2, 4, a, Λ, Λ, 6, b, Λ, Λ, Λ, Λ, Λ, Λ, c};
(1)

Values a, b, c are the last three digits taken
from your Student ID.
Note. In the original the array contained a mistake
(it had four Λ instead of six; but this was wrong, it
does not correspond to any tree).

(A) Draw the binary tree represented by the
array 1 in your answer. The tree should
look nice: Draw left children to the left
(and right children to the right) of their
parents. Nodes on the same levels should
be aligned.

(B) What is the number of internal nodes in
this tree? The number of leaves in this
tree?

(C) List the vertices of this tree in the post-
order traversal order.
Note. You only show real nodes in the post-
order sequence (all Λ are just technical symbols
indicating absence of nodes; they are not part
of the tree).

(D) Write pseudo-code for an algorithm
getParent(i) that receives the index i
of some node in this array, returns the
index of the parent of this node (or −1,
if the node has no parent). All indices i
are zero-based (in an array of length 10,
i ∈ {0, . . . , 9}).

(E) Assume that there is a different array
(representing another binary tree) which
does not contain any Λ values; all values
there represent some nodes. Describe
the property such trees must satisfy.

2

Question 1.

Figure 2: Time complexity (inside out).

To estimate time complexity from the given
code or pseudocode, you can work inside out
(first estimate the time complexity for a sin-
gle loop iteration, then estimate how many
times the loop itself is executed, then multi-
ply both estimates, etc.).
(A) Lines 5–6.
Time is O(1), since these are just two opera-
tions on 4-byte integers. (It is obviously true
for the regular int type. Even in the case
when n is very large number and the array
elements do not fit into the 4-byte register,
division by 2 can take constant time, if num-
ber is written into binary notation: it is just
the right shift.)
(B) Lines 4–7.
Time is O(n) ·O(1) = O(n).
To verify this claim, note that any array el-
ement is a number with n digits (in decimal
notation). Its value is at most 10n. In order
to have k iterations of the while loop (be-
fore arr[row][col] turns to 0) we should
have 10n ≥ 2k, i.e. k ≤ n · log2 10 is in O(n).
(C) Lines 3–8.
Time is n ·O(n) = O(n2).
Indeed, the for-loop (Line 3) executes n times;
so we multiply n by O(n) and get O(n2).
(D) Lines 14–16.
Time is O(n) · O(n · n) = O(n3). Method
main() calls function fun n times.

Question 2.
(A) Answer: True.
We prove that f(n) = 100n2 + 1

4
n3 is in

O(n3).
Proof. Select n0 = 1, C = 1001

4
. Denote

g(n) = n3. We check that f(n) is in O(g(n)).
For each n ≥ n0 = 1 we have n2 ≤ n3 and
therefore

|f(n)| = |100n2 +
1

4
n3| ≤ |100n3 +

1

4
n3| =

= |1001
4
n3| ≤ 101

1

4
|n3| = C · |g(n)|.

(B) Answer: False.
We state that f(n) = (log2 n)

2 is not in O(g(n)),
where we denote g(n) = log2 n.
Assume from contrary that somebody has se-
lected n0 and C such that for every n ≥ n0

we have:
|f(n)| ≤ C|g(n)|.

We pick n such that log2 n > C or n > 2C

and simultaneosly n ≥ n0 (we can have the
maximum of both 2C and n0).
Note. This example can also demonstrate,
why it is not easy to estimate the Big-O nota-
tion from computer-generated function graphs.
If you pick, say C = 100, the values n where
|f(n)| exceeds C|g(n)| may become quite large.

Figure 3: Insufficient interval for x.

See Figure 3. It seems that the red graph y =
100 · g(x) = 100 · log2 x is much larger than

3

the blue graph y = f(x) = (log2 x)
2. The

problem with these graphs is the very short
interval x ∈ [1; 1000] where these functions
are compared.
If you consider x ∈ [1; 5 · 1030], it is easy
to see that the logarithm squared (the blue
function f(x)) overtakes the red function 100·
g(x) = 100 · log2 x. See Figure 4. In practice
it is much better to use limit calculus (be-
cause with function graphs it is hard to tell,
how far you need to draw before you can see
which expression is bigger):

lim
x→∞

(log2 x)
2

log2 x
= lim

x→∞
log2 x = +∞.

Figure 4: g(x) = (log2 x)
2 not in O(log2 x).

Question 3. Let us show queue after each
queue operation. Let us consider one partic-
ular example. for your a, b, c the result may
look different; it might be “rotated”, because
F (the front pointer) is different. Also the
newly enqueued values (x1, . . .) will likely be
different. Your queue will also have 4 entries
(unshaded cells) at the start and 5 entries at
the very end.
We take abc = 789. For these values we have
these initial values:

F = 2, L = 4, x1 = 4, x2 = 0, x3 = 1, x4 = 2.

Figure 5: Queue states.

Question 4.
(A) The array and corresponding tree are
shown below:

int a[] = {1, 2, 4, a, Λ, Λ, 6, b, Λ, Λ, Λ, Λ, Λ, Λ, c};

Figure 6: Binary tree for the array.

(B) There are 5 internal nodes and 2 leaves.
(C) Postorder sequence for the nodes (namely,
first visit both subtrees in postorder, then the
parent) is the following:

b, a, 2, c, 6, 4, 1.

(D) The pseudocode is given below:

getParent(i)
1 if i mod 2 == 0 :
2 return (i− 2)/2
3 if i mod 2 == 1 :
4 return (i− 1)/2

4

You can also merge both formulas and get
this formula:

getParent(i) =
⌊
i− 1

2

⌋
.

Here we use the floor function (rounding down).
(E) Such trees are called complete trees (all
levels in such trees are full, except maybe the
last level, which can be only partially full,
but is filled without any interruptions from
the left side).

5

