

Data Structures and Algorithms
	COURSE No.:
	PBM763

	PROGRAM:
	BITL

	INSTRUCTOR:
	Kalvis Apsītis; Jānis Lazovskis

	CLASS DAYS & TIME:
	5 cr.
Fall 2020 Semester: Mon, Wed, Thu
2020-09-07 to 2020-12-18
Three 90-minute sessions; also about 8 hrs of independent study time per week).

	OFFICE LOCATION & HOURS:
	Please view the official schedule and epidemiological updates.

	CONTACT PHONE:
	+371 29112997

	E-MAIL:
	kalvis.apsitis@rbs.lv; jlazovskis@gmail.com

	PREREQUISITES:
	Ievads Datorzinībās – I, Ievads Datorzinībās – II. (This refers to the Python and Scala programming course by Leo and Gundega.)

	
TEXTBOOK
The Textbook: M.T.Goodrich, R.Tamassia, D.Mount. Data Structures and Algorithms in C++, 2nd edition. 2011, John Wiley & Sons.
Class Website: http://linen-tracer-682.appspot.com/data-structures/index.html
It contains task analysis (skills that are in the scope of this course); slide-decks and descriptions of assignments.

COURSE OBJECTIVES
The course covers design and properties of data structures (such as arays, vectors, lists, stacks, queues, trees, hash tables) at the Abstract Data Type level and also at the implementation level. It introduces algorithms using these data structures on various topics. C++ is a high-level programming language to illustrate the related concrete datatypes, memory management and algorithm running time.
For each family of algorithms the time complexity is performed; time-space tradeoffs are discussed. Algorithms are grouped by their design paradigms (greedy, divide-and-conquer, and so on). Design Patterns in Object Orientated programming ensure that algorithmic software is reusable. The course shows the importance of choosing appropriate data structures for real-world programming projects.
COURSE OVERVIEW
This course discusses programming tasks at several levels of abstraction:
· Describe how certain families of real-world algorithmic tasks (such as sorting, searching, string processing, graph-related, combinatorial, geometric or numerical problems) translate into formalized algorithms and data structures. At this level a problem can be converted from a human language to a pseudocode to get a preliminary idea about the solution, its correctness and efficiency.
· Define data structures as abstract data types with certain public interfaces. At this level object orientation can serve to separate implementation details from the public API that is invoked from the problem domain.
· Explain how to use C++ to develop a collection of software artefacts that can build a solution, using the computer hardware efficiently. At this level C++ helps to implement and to use the most popular data structures.
In order to understand the consequences of choosing certain data structures, we sometimes use the built-in libraries of data structures (such as the STL library in C++), and sometimes implement basic data structures ourselves.
In order to acquire the skills on all the interrelated topics, the following activities are planned:
	Description of the activity

	(1) Classroom or Remote Sessions:
Objectives: Cover important stories about data-structures and algorithms, introduce new concepts and clarify misunderstandings. Get started with all the other activities and discuss them informally.
Challenges: Interactivity and participation should happen; topics should appear in a logical order to align with the current assignments.
Students should be encouraged to use their class sessions to make their leisure/independent coding experience more meaningful.
Techniques: Attending class sessions is mandatory; we can assign mandatory office hours for those who have fallen behind.
The topics to be covered should be known in advance; students are encouraged to read ahead. Classroom sessions often have small assignments (up to 10-15 minutes from the total class time).
Evaluations: To encourage active participation, informal polls, multiple-choice or short answer quizzes can be offered. They can be graded by a computer or by a human; in some cases the attendance and participation counts.

	(2) Coding exercises in C++:
Objectives: New programming language like C++ deserves regular practice; it is not helpful to start immediately with large programming projects.
Challenges: There are large differences in programming experience and consequently – unpredictable drain on students’ free time. The class is (mostly) not about C++.
Techniques: About once every week we start a short coding exercise in C++ in a class session. It can involve small programs from the ground up, refactoring an existing code or error correction or learning how to use a specific language feature – of the sort “Add your code here”. These coding exercises are assumed to be short (some 20-30 lines of code).
Evaluations: Some I/O behavior checks plus pattern matching for the source code (to detect expected or forbidden language features) should allow automated or semi-automated grading.

	(3) Programming Problems:
Objectives: In programming problems the participants can go through all the steps of the algorithmic problem solving – starting with a problem that describes a real-world situation and ending with software that solves it correctly and efficiently.
Challenges: Larger programming exercises may create stressful situations just before the deadline.
Techniques: A programming problem is explained as a real-world task; the abstractions needed for the algorithmic model are applied by the students. Input and output data samples ensure that there is no ambiguity.
For some programming problems two separate submissions may be introduced – the first one ensures some basic functionality; the next one – focuses on behavior for large input data and reasonable performance.
· 1 STL problem: Use the built-in STL library and its data structures.
· 3 problems built from the scratch: Use only the I/O libraries and implement all the needed data structures by yourselves.
· 1 team problem: Convert a user story into an algorithmic problem; create a precise specification and solve it using all previous techniques.
Evaluation: Public test cases (available before the turn-in date) and private test cases are used for grading. Before submitting one can verify, if the code compiles and runs the public tests.

	(4) Midterm and Final exams:
Objectives: The conceptual material about the algorithms and data structures (operations of abstract data types, their implementations, amortized time complexity, time-space tradeoffs, hash functions and many other things) can be tested in written exams. Some of this is covered by the in-class assignments.

COURSE REQUIREMENTS
In order to get a satisfactory grade, there are some mandatory activities that you need to complete.
(1) Class Sessions (about 40) and In-Class Assignments during the class: We expect that you attend all scheduled classes (missing several classes in a row because of health reasons might imply some). Attendance is 50 points and in-class assignments during the class (polls, short-answer tests or written tests) is also 50 points.
(2) Coding Exercises (about once per week): They cover one particular aspect of C++ language. They are typically started in a class, and finished by the students a few days later. They should be submitted by a deadline and just their conformance to the formal (both functional and non-functional) requirements is evaluated.
(3) Programming Problems (5) are longer programming assignments that involve analysis and implementation of a problem (sometimes using built-in data-structure libraries such as STL, sometimes doing the data structures “from the scratch”). They have to be submitted by a deadline and private test cases (i.e. tests not known to the student) may be used during the grading.
Some problems are submitted in two parts – the first part aims at getting the correct functionality for certain typical inputs; the second part can
(4) Midterm and Final Exams (1 and 1). Books and notes are not allowed during the exams (unless they are done remotely). Make-up exams for the midterm and the final are generally not given. If there are extenuating circumstances and you must miss an exam, the instructor must be notified ahead of the exam time. The only time a make-up exam can be taken is during the week following the date of the exam. If a student does not notify the instructor of an absence or misses the make-up exam deadline, the exam will not be included in the final grade.
GRADING
Grading for the course is as follows:					 	 Final grades are calculated on the following basis.
> 949 = 10
850-949 = 9
750-849 = 8
650-749 = 7
550-649 = 6
450-549 = 5
350-449 = 4
< 350	 = failing

Your grades will be updated regularly on the online assistant. Please check to see that your grades are recorded correctly.

		Assignments
	Points

	In-class assignments
	 200

	Coding exercises
	 150

	Programming Problems
	[bookmark: _GoBack] 350

	Written Exams (Midterm and Final)
	 300

	TOTAL
	 1000

ACADEMIC INTEGRITY
To strengthen ethics within Riga Business School and the business community the RBS policy is to take steps to avoid cases of academic fraud. Be aware that any student who turns in computer code that is not their own will be subject to the RBS sanctions policy on Academic Fraud (see the policy on the online assistant). The same consequences apply to academic dishonesty on in-class assignments and exams.
To find information on what plagiarism is and how to avoid it please visit the links at:
http://www.uottawa.ca/plagiarism.pdf
http://www.socialsciences.uottawa.ca/pdf/plagiarism2.pdf
http://www.sass.uottawa.ca/writing/plagiarism.pdf
This short presentation on research and plagiarism will also help learn to correctly reference sources and provides good advice on research:
http://library.acadiau.ca/tutorials/plagiarism/
During the Data Structures and Algorithms class, you should be aware of the following integrity guidelines in particular:
· In-class Assignments: They may be either supervised or unsupervised (remote students). You are on your honor to complete them independently, using your notes, Internet and the computational devices, but no human assistance. Failure to do so may result in poor performance during the midterm and final exams.
· Coding exercises and Programming problems: You should be capable to explain the code you have written. You are encouraged to discuss your assignments and code snippets on the whiteboard, but you should never exchange your solutions in any form or copy the answers from the Internet (even when you can find them). Your code should be created and typed by you.
· Exams: Exams will be proctored and are closed book and closed notes; you can use only paper and pen. It will be open book and open notes, if it is done remotely. During the exam you cannot communicate with others regarding your solutions.
An excerpt from the Syllabus of Buffalo CSE 250:
· No tolerance on plagiarism:
· 0 on the particular assignment/exam for first attempt
· Fail the course on the second
· Group study/discussion is encouraged, but the submission must be your own work
· On the Programming Assignments: discussions of ideas are welcome, but NO exchanges of source codes, please.
· I will take cheating VERY VERY seriously
https://cse.buffalo.edu/~hungngo/classes/2013/Fall/250/syllabus.html
[image:]

3

[bookmark: OLE_LINK1]CLASS SCHEDULE
A specific schedule of topics is listed below. Topics and submission dates may change to synchronize with the course load in other subjects. The activities listed here are just examples or suggestions. They may change later as we adjust to the speed of the class.
On Pre-Class Preparation see the homepage http://linen-tracer-682.appspot.com/data-structures/index.html for the most actual information.
	Fall
2020
	Topic
	Pre-class preparation
	Deliverables and Activities (may need to be changed and adjusted)

	Week1

	· Create HelloWorld style programs.
· Use expressions, control structures and functions in C++
	(Goodrich2011) Chapter 1,
Part 1, 2,3,4
(CH01P01; CH01P02; CH01P03; CH01P04)
	Coding: Hello World.
Coding: Expressions and bit operations.
In-class: Stack as an array.

	Week2
07.09 - 11.09
	· Use C++ classes.
· Write multi-file programs in C++, use header files, and input-output to files.
	CH01P05; CH01P06
	Coding: Implementing recursive (and mutually recursive) functions.
In-class: Flowcharts vs. Control structures.
In-class: Doubly-ended queue as an array.

	Week 3
14.09 - 18.09
	· Use Object Orientation (OO) concepts in C++ (abstraction, encapsulation, inheritance, polymorphism)
· Understand the C++ memory model.
	CH02P01;
CH02P02;
CH02P03;
CH14P01;
CH14P02
	Coding: Playing with the STL library
In-class: Finding Big-O notation and/or solving sums and recurrences (time analysis).

	Week 4
21.09 -
25.09
	· Analyze time complexity of algorithms.
· Define and implement operations in Abstract Data Types (ADTs)
· Use STL (standard template library) to implement some containers – vectors, stacks, maps, etc.
	CH04P02
CH06P01;
CH06P02;
CH06P03;
CH01P05
	Coding: Calls of some library sorting methods (passing the custom comparison function)
In-class: Drawing list-like data structures as pointer diagrams.
Problem 1: An ICPC-style problem with STL.

	Week 5
28.09 -
02.10
	· Introduce some OO design patterns in C++.
· Test and debug algorithms in C++
	CH02P01; CH05P03; CH07P03; CH09P01; CH11P04; CH13P03; CH01P07;
CH04P03
	Coding: Array implementation of a complete binary tree.
In-class: Drawing an array representation of an (arbitrary) binary tree.

	Week 6
05.10 -
09.10
	· Construct and manipulate list-like data structures.
· Construct and traverse tree-like data structures.
	CH03P01;
CH03P02;
CH03P03;
CH05P01;
CH05P02;
CH05P03;
CH06P01;
CH06P02;
CH06P03;
CH07P01;
CH07P02

	Problem 2: Another ICPC-style problem using lists etc.
In-class: Dooing some heap operations on paper.

	Week 7
12.10 -
16.10
	· Construct and manipulate priority queues and heaps.
· Construct and manipulate maps and dictionaries.
	CH08P01;
CH08P02;
CH08P03;
CH09P01;
CH09P02;
CH09P03;
CH09P04
	In-class: Doing 1-2 steps of some efficient sorting on paper.

	Week 8
19.10 -
23.10
	· Construct and manipulate Binary Search Trees (BSTs).
· Construct and manipulate balanced BSTs.
	CH10P02;
CH10P03;
CH10P04;
CH10P05

	Problem 3: Use search trees, maps, dictionaries

	Week 9
26.10 -
30.10
	· Analyze and compare sorting algorithms.
· Construct and manipulate set-like structures (also maps, dictionaries, hashtables).
	CH11P01;
CH11P02;
CH11P03;
CH11P04;
CH11P05

	Coding: Pointer exercise on balancing and tree rotation.
In-class: Drawing an operation on AVL tree.

	Week 10
02.11 – 06.11
	· Describe graph-related structures and their traversals.
· Analyze Shortest Paths and MST algorithms.
	CH13P01;
CH13P02;
CH13P03;
CH13P04;
CH13P05;
CH13P06
	Problem 4: Use weighted graphs or some other augmented structure.

	Week 11
09.11 -
13.11
	· Describe types of algorithmic problems.
· Describve exhaustive, brute force paradigm; illustrate with algorithms.
	TBA
	Coding: An easy numeric method (iterative linear equations or similar)

	Week 12
16.11 -
20.11
	· Describe decrease and conquer paradigm; illustrate with algorithms.
· Celebrate the Holidays.
	TBA
	Problem 5: Converting user story into an algorithmic problem.

	Week 13
23.11 -
27.11
	· Describe divide and conquer paradigm; illustrate with algorithms.
· Describe time and space tradeoffs in algorithm design.
	TBA
	Problem 5: Back-end implementation

	Week 14 30.11 -
04.12

	· Describe dynamic programming paradigm.
· Describe greedy paradigm; illustrate with algorithms.
	TBA
	Problem 5: Integrating the back-end with some application.

	Consultation Week
07.12 - 11.12
	Reviewing all the topics
	Reviewing your programming problems and other assignments; also the list of preparation topics to be released before the final exam.
	None

	Exam Session
14.12 - 18.12
	Final Exam (TBA)
	N/A
	Final Exam

8

image1.png

