
Programming task: Through a Looking Glass

Description

Alice has drawn a tree (in the IT sense), where nodes have unique numbers on the
paper (look at Drawing on the paper in the picture). After a moment, Alice
remembered her adventures as she went through the Looking-Glass. She
immediately wanted to know, what this tree would look like in the mirror. Help
Alice with this task and draw the mirror image of the tree (look at Mirror image).

A Tree and its Mirror Image

A computer understands a tree defined in the following format:
1. each line contains a record about a node that is not a leaf (internal node);
2. the first number of the record starts with a number of the internal node, followed
by the numbers of its children in the left-to-right order.

If the order of these records is not strictly defined, then the tree shown in the Figure
can have different representations. For example, it can be defined as:

1 2 3 4 5
3 6 7
5 8
8 9 10 11

or

5 8
3 6 7
8 9 10 11
1 2 3 4 5

The output tree should also be written in the same format. However, there is an
additional condition that internal nodes are in preorder sequence, i.e. the parent’s
record always precedes the child record.

Your program should process trees written in any order in time no longer than
𝑂(𝑛log𝑛).

Alice is not keen on drawing trees. Consequently, a tree would not contain more
than 10’000 nodes.

Input:

The input file contains zero or more records with the records of internal nodes of
the tree in the following format:

Parent Child_1 Child_2 ... Child_n
...
0

• Parent shows the number of internal node of the tree [1..999’999’999]
• Child_i is the number of i-th child of Parent node (number [1..999’999’999])
• 0 - Input file always ends with the line containing only the number 0.

The input file is correct regarding the input data format and the given conditions.

Output:

The output file should contain a mirror image of the given tree. The tree should be
written in the following way: internal nodes in preorder sequence.

Example 1 (input in preorder):

The content of input file test01in.txt:

1 2 3 4 5
3 6 7
5 8
8 9 10 11
0

The content of output file test01expected.txt:

1 5 4 3 2
5 8
8 11 10 9
3 7 6
0

Example 2 (input in free order):

The content of input file test02in.txt:

5 8
3 6 7
8 9 10 11
1 2 3 4 5
0

The content of output file test02expected.txt:

1 5 4 3 2
5 8
8 11 10 9
3 7 6
0

Implementation Details

 Use a standard subdirectory name: Your solution should be located in
subdirectory ex03-alice (all lowercase letters).

 Use a standard Git branch name: In the GitHub repository there should
also be a branch of the same name:
ex03-alice (this makes the grading process scalable – because we do not
need to synchronize files in all the other directories).

 Use the expected file names (they are case sensitive): The source files
that you need to rebuild and test your project should all be in the ex03-alice
subdirectory - AliceMain.cpp, Node.cpp and Node.h.
Your repository will also likely contain a Makefile (it can contain anything
that is useful for your testing and debugging – because during the grading we
will overwrite it with another one). It also would likely contain test files
(INPUT files like test01in.txt) and expected results (like test01expected.txt).

 Do not keep useless files in the repository: Do not check in any executable
files (ex03alice on Linux or ex03alice.exe on Windows etc.). Do not keep
output files (test01out.txt etc.), object files and other stuff created by
compiler. This would make your

 Your Node class or struct should be in the ds_course namespace (as every
other class implemented before in this course). This avoids name collisions
with similarly named classes that mean something else.

 Most of your grade (about 18 points out of 20 points) will reflect correct
behavior of your code. The remaining grade will also test the Object Oriented
design (grading process will provide the class InstructorMain.cpp – if your
code does not implement the interfaces to link with it – you will lose about 2
points).

Grading script (for 90% of all the tests) will treat your code as a “black box”; it will
call Linux executive file: ex03alice created by the Makefile in a way similar to this:

./ex03alice < in.txt > out.txt.

Object Oriented Design

The solution (that wants to get up to 100% of the grade, not just 90%) should
implement the following UML Class Diagram:

“struct Node” or “class Node” should contain two private members: “val” (the
number of the current node) and “children” (vector – i.e. a list of other Node
elements). For leaf nodes this should be empty.

Moreover, there will be an alternative “main” method (InstructorMain.cpp) that will
call the methods on your Node.cpp. (And include Node.h). You are not responsible
for implementing this InstructorMain.cpp, but you should ensure that the following
public methods are supported:

 Node(int vv) – a constructor assigning parameter “vv” to the private member
“val”.

 addChild(child Node) – add one more child (to the right of all existing ones).

 reflect() – flip the existing Node (and all its successors – children,
grandchildren, etc.) as a mirror image.

 printPreorder() – output the current node (and the whole subtree under it)
in the preorder sequence.

 getVal() – return integer: the number of the current node.

 getChildren() – return vector of integrs: the numbers of the direct children.

Note 1: Please note that the current class design means that any node can navigate
to its children, but a child node does not have a back-link to its parent. For some
tasks you might need to move “upwards” in a tree (find the parent, grandparent,
etc.), but for a simple DFS preorder traversal (and also – reflecting the tree as its
mirror image) you only need down-links to the children.

Note 2: (getVal() and getChildren() might be irrelevant for producing the mirror
images, but these “accessor methods” will make the task of evaluating in
InstructorMain.cpp much easier.)

