
C++ Exercise 4: Matrix Operations
Anotācija

This exercise covers polymorphism, function overloading as well as operator overloading,
raising domain-specific exceptions or error conditions.

How to submit: Check your code into your GitHub repository, the default master branch,
tag it as ex04submit (all lowercase, no dashes).
Grading: This exercise is worth 30‰(or 3%) of the total grade.

Develop a software that receives an input file containing two rectangular matrices (in our math
expressions we denote them by A and B respectively). Every matrix first displays its type (MZ,
MQ or MR), its dimensions (positive integers: row number m, column number n), followed by
exactly m · n numbers of the respective type. Both matrices are of the same type.
After that it receives an operation name (ADD, SUB or MUL) and writes the resulting matrix
to the standard output. If matrix sizes do not allow the operation to be performed, throw
std::out_of_range.
Valid matrix operations: Assume that there is a matrix A of size m1 × n1 and a matrix B
of size m2 × n2:

(A) C = A + B (operation ADD) is doable iff m1 = m2 and n1 = n2 (both sizes match). The
elements (cij) of C are defined as cij = aij + bij .

(B) C = A − B (operation SUB) is doable iff m1 = m2 and n1 = n2 (both sizes match). The
elements (cij) of C are defined as cij = aij − bij .

(C) C = A · B (operation MUL) is doable iff n1 = m2 (the number of colums in the matrix to
the left equals the number of rows in the matrix to the right). The elements (cij) of C are
defined as

cij =

n1∑
k=1

aik · bkj ,

kur i ∈ {1, . . . ,m1} un j ∈ {1, . . . , n2}.

Input
The first line contains abbreviation MZ, MQ and MR followed by number of rows m and the number
of columns n (two positive integers). After that there are m · n numbers (integers, rationals
written with a forward slash p/q or reals – double type numbers).

Output
The output is either the result matrix (of the same type as the two input matrices). It shows
type (MZ, MQ or MR) on the first line, also the count of rows and columns. After that it shows
all the matrix elements - separated by spaces, line by line. If there was an exception, print just
the exception name out_of_range.

Limitations

• Any matrix in the input file has the number of rows and the number of columns between
1 and 256 (thus the largest matrix can be 256× 256).



• Integer arithmetic when adding, subtracting or computing sums like ai1b1j + . . . should
not overflow the size of int register. (Namely, you should not worry about the order in
which you add numbers themselves or their products.)

• The same assumption can be made about the rationals (class Ratio) as well as reals: You
can add them in any order you want. The input data will not deliberately cause large
rounding errors as in this example:

1000000000 + 0.00001− 1000000000.

• All the rational numbers (both input and output) are in the reduced form (gcd(p, q) = 1),
denominators are always positive. For example, the rational number −0.5 is always input
and output as −1/2 (and never as −6/3 or 1/− 2).

• Rational numbers that happen to be integers still have denominator 1 explicitly written.
For example, the rational number 17 in MQ matrices is always written as 17/1.

• All matrices in the input will be presented correctly, but sometimes the operations may
be impossible.

Notes on Strassen’s Algorithm
It could be tempting to consider Strassen’s Algorithm for multiplying matrices that are suffi-
ciently large (the number of arithmetic operations would be about O(n2.8074) instead of O(n3)).
On the other hand, it is likely require very large matrices (at least a few thousand by a few thou-
sand) to see any savings when compared with the school algorithm for matrix multiplication.
See https://bit.ly/3jblOWX for more discussion on this.
We will have other examples in this course where algorithm can be designed to be more efficient.
You could try to implement Strassen’s algorithm, if the current task seems too straightforward.

Sample input test01in.txt:

MZ 3 3
2 -6 8
10 6 -1
-4 -5 0
MZ 3 4
2 -6 -10 -1
6 -5 10 0
9 4 5 -4
MUL

Expected output test01expected.txt:

MZ 3 4
40 50 -40 -34
47 -94 -45 -6
-38 49 -10 4

Sample input test02in.txt:

MQ 2 2
0/1 6/5
-5/9 -1/1
MQ 2 2
-7/4 3/10
5/9 1/8
ADD

Expected output test02expected.txt:

MQ 2 2
-7/4 3/2
0 -7/8

2

https://bit.ly/3jblOWX


Sample input test03in.txt:

MR 2 3
1 0.3 0
0 0.7 1
MR 2 2
1.0 0
0 1.0
MUL

Expected output test03expected.txt:

out_of_range

Implementation Details

1. Implement files Ratio.h (optionally also Ratio.cpp), Matrix.h (optionally also Matrix.cpp)
and also MatricMain.cpp. (You may find that header-only implementation is the most
easy to build on most C++ compilers, but using CPP files isfine.)

2. It is recommended to implement the following UML diagram using operator overloading
(see Figure 1).
Note: Just as in previous tasks, your main concern should be passing the Standard
Input/Output testcases, since your grade for EX04 only depends on these. Still, we
strongly recommend to follow the UML diagram since the following exercise (EX05) will
assume that the UML diagram is implemented; it will build on top of these overloaded
operators and interfaces.

3



Figure 1: Classes and functions suggested for EX04.

4


