
C++ Exercise 5: Circularly Linked Lists
Deadline: Monday, October 12, 2020 by 23:59:59 EEST Timezone.
How to submit: Check your code into your GitHub repository, the default master branch,
tag it as ex05submit (all lowercase, no dashes).
Grading: This exercise is worth 30‰(or 3%) of the total grade.

Develop a software that receives a list of integers and adds them to a circular linked list (im-
plemented as pointers). See Section 3.4.1 in the textbook.

Input
The first line contains number N (the number of integers to add into the initial circularly linked
list). After that the input contains exactly N integers (not necessarily different) that fit into
the int data type. All these integers are written on a single line. After that there are one or
more operations that insert or delete things at certain places in the circularly linked list (we
assume that the cursor does not change once the circularly linked list becomes nonempty).

Output
The output is a list of integers (starting from the circularly linked list’s “front” element - pointed
to by the cursor) after all the insert and delete operations performed.

Implementation Details

1. Implement files CircleList.cpp (and CircleList.h) that ensure circularly linked list of
integers. Also implement CircleListMain.cpp to read input and write to output.

2. If you need any other C++ classes or structures (for a single Circularly Linked List node,
custom exception OutOfBoundsException etc.) add these structures to your CircleList.cpp
and CircleList.h respectively. We do not test any of them separately.

3. Implement the functions of a circularly linked list to support the ADT of this abstract
data structure (see Figure 1).

4. Even if you do not need some of the functions (for insertion or deletion), make sure that
they are still implemented - as we might use them in the next lab that will be continued
next week.

5. Ensure that your code has destructors for all the data structures you dynamically create
and that your code has no memory leaks.

6. If the command cannot be performed (insert or delete position is larger than the current
size of the circularly linked list), thrown a custom exception OutOfBoundsException.

Sample input test01in.txt:

6
11 12 13 14 15 16
INS 2 1000

Expected output test01expected.txt:

11 12 1000 13 14 15 16

Sample input test02in.txt:

6
11 12 13 14 15 16
DEL 2

Expected output test02expected.txt:

11 12 14 15 16



Figure 1: Circularly linked lists.

Sample input test03in.txt:

6
11 12 13 14 15 16
INS 0 100
DEL 2

Expected output test03expected.txt:

100 11 13 14 15 16

Sample input test04in.txt:

6
11 12 13 14 15 16
DEL 6

Expected output test04expected.txt:

OutOfBoundsException

Sample input test05in.txt:

6
11 12 13 14 15 16
INS 6 101

Expected output test05expected.txt:

11 12 13 14 15 16 101

Sample input test06in.txt:

6
11 12 13 14 15 16
INS 7 101

Expected output test06expected.txt:

OutOfBoundsException

Running Unit tests (Check2)
Inserting and deleting items from lists of integers can be implemented in many ways. The
operations that we want (INS and DEL at certain positions in the list) can be easily expressed
using the circularly linked list ADT (Figure 1).
To distinguish “high-level mistakes” in our code (e.g. handling input/output incorrectly or
misinterpreting where we need to insert and delete) from “low-level mistakes” (wrongly imple-
mented data structure), we suggest that you run Unit tests on CircleList classes
In fact, out of 30 points for this exercise, 10 points will be given for satisfying the unit tests.
A few notes before you apply the CircleList class to the EX05 problem (inserting/deleting
integers at certain positions):

1. The function front() returns integer value following the cursor, but back() returns the

2



integer value currently under the cursor. (This is explained in the textbook too, just the
two comments have switched places on p.130).

2. In order to throw OutOfBoundsException whenever we insert at position that does not
currently exist (and also is not next to one that currently exists), we need to know the
current size of the circularly linked list. Therefore the getSize() method in the UML
diagram (Figure 2). The same function is needed as we delete from that list.

3. Adding and removing elements only happen next to the head/cursor. If you need to
add/remove in any other place, you need to call advance() certain number of times. And
after the operation you need to return the list to the original cursor position. It can be
achieved in two ways: Either you call advance() many times to run around the whole
list. Or you can also implement retreat() that works in the opposite direction than
advance() (head travels back using prev pointer in CNote.)

Our Unit tests are implemented using Catch2 framework; see https://github.com/catchorg/
Catch2. It means that you download catch.hpp and place it in your project directory. Tests
are organized into testcases and sections. Each of testcases (or sections therein) can call your
CircleList implementation.
Since this file (Catch2TestRunner.cpp) creates its own main() method, you cannot run it in the
same executable as the one created by the CircleListMain.cpp. Please refer to the Makefile
and the testcases Catch2TestRunner.cpp for details - under EX05 lab section in
http://linen-tracer-682.appspot.com/data-structures/assignments.html.

3

https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
http://linen-tracer-682.appspot.com/data-structures/assignments.html


Figure 2: Classes for EX05.

4


