
C++ Exercise 7: Aliens

Deadline: Monday, November 9, 2020 by 23:59:59 EET Timezone.
How to submit: Check your code into your GitHub repository, the default master branch,
tag it as ex07submit (all lowercase, no dashes).
Grading: This exercise is worth 100‰(or 10%) of the total grade.
Objectives: Using pointers, arrays, user-defined classes (but no external libraries like STL or
Boost) complete the node traversal exercise described below: Read input from STDIN, write
output to STDOUT and report error conditions, if input data has inconsistencies. Perfor-
mance targets: RAM Memory: 4 MiB. Run-Time on a single input file: 0.1 seconds.
If your program is correct, but not very efficient, you can still get most of the credit (about 70%
of the testcases will be small: no more than 100 nodes of the input data). But the performance
targets should guide you against choosing some outrageously inefficient algorithms. UML
Class Design: During the first week we suggest that you develop a class design (preferrably
as a UML diagram or, maybe, a set of CPP header files) showing the function prototypes that
you will use. And some testcases (Check2 or anything else) to test these functions. It should
be submitted by November 2 (a separate folder in ORTUS). During the second week you can
write all the code to implement this class design (you can make changes, if you find out that
you do not like your class design).

Description
In 2020 humans sent an autonomous robot Perseverance to Mars. (The goals were explained
in their press-release as follows: ”The program’s ongoing series of missions is helping us answer
key questions about the potential for life on Mars. While previous missions have helped us look
for signs of habitable conditions in ancient times, Perseverance will take it one step further by
searching for signs of past microbial life itself.”) Soon Perseverance noticed various signs of life
on Mars. They took images of green creatures who could change their location. After trying to
hide for some time, the creatures (subsequently called aliens) started to communicate with our
civilization.
To address culture differences and avoid misunderstandings, earthlings became interested in the
everyday life of aliens. As they found out, aliens have asexual reproduction: every alien can have
no more than two children. Every child is either left-handed or right-handed. Additionally, if an
alien has two children, they are necessarily of different types: one of them is left-handed, and the
other one is right-handed. Reproduction can happen soon after birth, many generations can live
simultaneously. Since aliens have very large families, every alien maintains close relationship
with its favourite relatives (every alien has up to 2 such relatives).
Earthlings wanted to find out, how to identify the two (or fewer) favorite relatives for the given
alien. First, we pick some alien without living parent. Then draw the family tree (the tree
of parent-child relationships with the given alien as the root). Every alien in this family tree
has two favorite relatives immediately preceding him and immediately following him in the
inorder DFS traversal of that tree. Left-handed aliens are shown to the left of their parent, the
right-hinded ones - to the right.
Your task is to build an efficient program that receives the genealogy data for one or more
family trees, and it finds the two favorite relative aliens for any given alien upon receiving a
query.
It is known that no more than 10 000 aliens are currently alive. Every alien has a unique number
[1..10 000].



Input
We add nodes one at a time. Commands can come at any order (but if we add a child, its
parent must be added – otherwise it should be reported as an error). In-between the commands
(that gradually build a “forest” of one or more trees) we can add query commands to find the
favorite relatives for a given node in the tree that has been built so far.
The input file contains one of these five commands that build a collection of genealogy trees:

1. Specify a Top living ancestor of an alien family tree (it has no living parents).

2. Specify the Left-handed child for a parent.

3. Specify the right-handed child for a parent.

4. Query for the favorite relatives of a given alien.

5. Finish your work.

The syntax for all these commands looks like this:

T Ancestor
...
L Parent Child
...
R Parent Child
...
? Alien
...
F

• Ancestor is a number for an alien that is a top living ancestor of some genealogy tree.
(Ancestor may stay the only node in his tree; then both his favorite relatives are nonex-
istent).

• L is the command to specify the left-handed Child for a Parent.

• R is the command to specify the right-handed child for a parent.

• In the query command Alien is the alien identificator in the request to find the favorite
relatives.

• Any identificator for a an alien (Ancestor, Parent, Child, Alien) is an integer number
from the interval [1; 10 000])

The input data is valid - regarding the format and the limitations defined above. Some tree
editing commands may refer to nodes that cannot be inserted (such commands should be ignored
and an error message printed). If a tree editing command succeeds, then a new node is added.

Output
Depending on the input file the output file contains output for every query command and also
every command that ends in failure. (Successful tree editing commands are silently executed,
they do not produce any output.)

2



PrevFav NextFav
...
error0
...
error1
...
error2
...
error3
...
error4
...
error5

Explanations for this syntax:

• PrevFav is the immediately preceding alien (in inorder DFS traversal order) for the given
Alien, when we run the command ? Alien. Therefore, it is one of the two favorite
relatives of the Alien. If there is no previous node, output 0.

• NextFav is the immediately following alien (in inorder DFS traversal order) for the given
Alien, when we run the command ? Alien. If there is no next alien, output 0.

• error0 – alien with identification number ‘Alien‘ does not exist in the family tree, when
we run the command ‘? Alien‘.

• error1 – Parent and Child are the same.

• error2 – Parent does not exist in any family tree.

• error3 – Child is already used in some family tree.

• error4 – Parent already has a left-handed child in the family tree.

• error5 – Parent already has a right-handed child in the family tree.

• error6 – Ancestor cannot start a new tree, since is already used in some family tree.

If a command causes multiple errors at once, print the one with the smallest number.

Sample Input and Output

3



Sample input test01in.txt:

T 7
L 7 2
R 7 9
L 9 5
? 2
R 5 6
L 2 4
L 5 1
? 5
? 8
L 1 4
F

Expected output test01expected.txt:

0 7
1 6
error0
error3

Figure 1: The data structure at two moments in time.

4


