
C++ Exercise 8: Balanced Trees
Deadline: Monday, November 30, 2020 by 23:59:59 EET Timezone.
How to submit: Check your code into your GitHub repository, the default master branch,
tag it as ex08submit (all lowercase, no dashes).
Grading: This exercise is worth 100‰(or 10%) of the total grade.
Objectives: Using pointers, arrays, user-defined classes (but no external libraries like STL or
Boost) implement an AVL tree to store string keys and integer values.
Important Guideline: The only predefined C++ libraries that can be used during this exer-
cise are iostream, sstream, string (i.e. the ”string” class to store keys and also the libraries
related to input and output).
Another Important Guideline: There are many AVL tree implementations in the public
Web. You are encouraged to look at this code, but you should avoid any copying of large chunks
of such code. It is not just a matter of academic honesty, but writing your own balancing code
with rotations is emotionally rewarding; and there may be subtle issues that you cannot properly
address and fix unless you wrote it yourself.

Description
In the past there have been serious concerns with hostile user behavior in social networks (e.g. the
suicide of a user of Ask.fm, a company founded in Latvia; see https://bit.ly/3lCCmZ0). For
this reason a highly responsible social media startup InstaDraugs wants to monitor all verbal
abuse or extremist speech in user comments and posts. They maintain a lexicon of trigger
words – collection of words indicating threats of violence, ethnic or racial slurs, sexually explicit
content, swearing, verbal abuse, cyberbullying as well as graphic descriptions of self-destructive
or extremist behavior. If some user comment contains these words and the total badness score
exceeds some threshold, it is removed immediately or a human moderator is alerted.
InstaDraugs stores their lexicon in an AVL tree (an ordered Binary Search Tree satisfying the
AVL condition) containing all sorts of bad words. Every word wi is associated with its badness
– a positive integer bi (badness indicates how many instances of that word appeared in the
training datasets so far). All the entries in the lexicon look like this:

(w1, b1), (w2, b2), . . . , (wk, bk),

where the keys are pairwise different. Sometimes the company finds that their lexicon is too
large; in this case they erase one or more words wi together with their associated values bi.
In addition to the insert and erase of words, the lexicon also serves to find words (i.e. to add
up the total badness for some text chunk to be verified). The QA department of InstaDraugs
also wants the ability to locate any given key in the lexicon (how to navigate to it from the
root of the AVL tree) to ensure that the lexicon always operates efficiently. They also need
the ability to dump the entire lexicon (or some alphabetically sorted portion of it) for further
review with their Linguistics department.
The program starts with an empty lexicon: the underlying AVL tree contains no entries. Every
word contains one or more letters; Instadraugs allows 52 letters (26 upper-case letters and 26
lower-case letters in English alphabet). They do not analyze punctuation, digits or special
characters to find offensive content. The keys in the AVL tree will never contain any hyphens,
apostrophes or other special symbols (as well as non-English letters). All words are case sensitive
(upper-case and lower case letters differ; for example, ES, es, Es, and eS are four different words.
There are five commands that can be executed on this lexicon. Two of them update the map,
the other three just read the current state of the lexicon and produce some output.

https://bit.ly/3lCCmZ0

• Command “insert”, preceded by a capital letter I. It is followed by one or more words
that are inserted into a map. When some word (say, abc) is inserted for the first time,
the map is initialized with a new entry (”abc”, 1). When the same word is inserted again,
the badness counter (its value in the map) is incremented: the entry becomes (”abc”, 2),
(”abc”, 3) and so on. If there are multiple words on the same line, they are all inserted.
The badness value for a word that repeats on the same line can be incremented multiple
times.
This command always succeeds and does not produce any output.

• Command “erase”, preceded by a capital letter E. It is followed by one or more words
that are erased from the map. Such words are deleted along with their associated badness
values. If the line with this command contains multiple words (separated by single spaces),
they are all erased. Erasing words that are not present in the current lexicon is ignored.
This command always succeeds and does not produce any output.

• Command “get”, preceded by a capital letter G. It is followed by a single word.
This command outputs the line number (where it is in the input file) followed by a space
and followed by the entry (word and the integer value associated with it). If the key does
not exist, the key with value 0 should be returned

• Command “locate”, preceded by a capital letter L. Such commands are followed by a
single word.
This command outputs the line number (where the line it is in the input file) followed
by a space and the letter N (if the word was not found) or the location of the key. The
location can be either an asterisk * (if the word is the root) or an asterisk followed by
some letters L, R indicating the location of the node in the tree (for example, *LRR means
that the key can be found going to the root, moving one step to the left and then two
steps to the right.)

• Command “dump”, preceded by a capital letter D. Such commands are followed by two
arguments start and end. Either of them or both can be underscores.
Dump command outputs its corresponding line number (from the input file) followed by
an ordered list of entries in your map (all pairs (wi, bi) where wi is between the start and
the end (may be also equal to them). If the start or the end are underscores, we should
dump the lexicon from the very beginning (or until the very end respectively). If the end
precedes the start (or nothing is found), this command returns an empty list.

AVL Tree
Every insert and erase should keep the underlying tree as an AVL tree. The concrete AVL tree
implementation (what types of pointers, classes, private/public members) is up to you, but it
should output the expected results for all the debug commands: If the lexicon is initialized in
a certain way with insert/erase commands, then the location of each key has certain value (it
is *, *L, *R, *LL, *LR, or similar).
See (Goodrich2011, p.438–449) Chapter 10.2; all AVL concepts and algorithms are explained
there. See also AVL Tree Rotations reference, https://bit.ly/2UEEbc8 (University of Florida)
and other good tutorials explaining how to manipulate AVL trees.

BST Ordering

2

https://bit.ly/2UEEbc8

Binary Search Trees (BSTs) rely on a certain ordering of its keys (in our situation – case-sensitive
words using the 52-symbol English alphabet).
The algorithm should support the following three orderings (the specific order to use is input
at the very beginning of the algorithm).
(1) Lexicographic order. Define that word w1 lexicographically precedes w2 (write w1 ≺lex
w2), if w1 is a prefix of w2. For example AB ≺lex ABA. Also define that w1 ≺lex w2, if neither
is a prefix of another, but in the first position where they differ, the symbol in w1 precedes the
symbol in w2. For example, ABBD ≺ ABC (the 3rd letter from the start differs: ABBD and ABC).
(2) Shortlex order. Shorter words precede longer words in the shortlex order; words of the
same length are compared lexicographically. Namely, w1 ≺shortlex w2 is true if and only if either
|w1| < |w2| (the length of w1 is smaller; it contains fewer letters than w2) or |w1| = |w2| and at
the same time w1 ≺lex w2.
(3) Colexicographic order. Define that word w1 colexicographically precedes w2 (w1 ≺colex
w2), if w1 is a suffix of w2. For example CDE ≺colex BCDE. Also define that w1 ≺colex w2, if
neither is a suffix of another, but in the first position (counting from the end) where they differ,
letter in w1 precedes the letter in w2. For example, ZVYZ ≺colex XYZ (the 3rd letter from the
end differs: ZVYZ and XYZ).

All the English letters are arranged alphabetically where different letters have primary differ-
ences. If two words differ only by their capitalization, then we compare their tertiarry differences
(a capital letter precedes the lower-case letter of the same type). Some examples:

1. abc ≺lex ABD, having letter c instead of D is a primary difference. If there is any primary
difference between the words, the letter capitalizations (tertiary differences) are ignored.

2. abc ≺lex ABCA; being a prefix of another word is also a primary difference, so the capital-
ization is ignored.

3. AB ≺lex Ab ≺lex aB ≺lex ab, just because of the tertiary differences – there are no primary
differences between these words. (BTW, the same lexicographic order is also used in real
dictionaries, see Figure 1.)

4. AbC ≺shortlex aBC: both words have length 3, and there are no primary differences. But
there is a tertiary difference: A “slightly precedes” the lower-case letter a, so AbC ≺lex aBC

(and for the words of the same length lexicographic order is same as shortlex order).

5. aBC ≺colex AbC in the colexicographic order (the tertiary difference is in the 2nd position
from the end: aBC < AbC).

6. zzz ≺shortlex AAAA, just because |zzz| = 3 is smaller than |AAAA| = 4, so the shortest word
precedes any longer word.

In the notation of RuleBasedCollator (see https://bit.ly/3nr0oH0) this alphabetical order
can be formally described like this:

< A, a < B, b < C, c < D, d < . . . < W, w < X, x < Y, y < Z, z

Namely, the non-existent letter alphabetically precedes any other letter (the sequence starts
with symbol <; shorter words always precede any other longer words containing that shorter

3

https://bit.ly/3nr0oH0

Figure 1: A screenshot of the 1st page of an Oxford English dictionary.

word). A pair of two letters of the same type (say, A, a) can alphabetically precede another pair
of letters (say, B, b), but the difference between upper-case A and lower-case a is tertiary, so they
are separated by a comma (not the < sign).
Note. Since we are not using any accents as in French or Ä, Ö, Ü as in German or long vowels,
we do not care about secondary differences between letters.
Some languages, including Latvian, need three levels of differences in their alphabets – primary,
secondary and tertiary. For example, A and Ā have a secondary difference in most real-world
dictionaries.

Limitations

• No word is longer than 30 characters.

• Input file can contain up to 10000 lines

• Input and erase commands contain up to 100 words each.

• The program should compile and run on a Linux OS (Xubuntu or similar) with 2GiB
runtime memory; any input file should be processed into an output file under 10 seconds
and the program should exit normally (not produce a segmentation fault or infinite loop).

Note. Pay some attention to your coding style, writing efficient code (in terms of memory
use and time); and also deleting unused memory objects and avoiding memory leaks. These
items will be discussed in our code review sessions (and leaving them unresolved may impact
the operation of InstaDraugs business, if they run your lexicon code for a long time and the
memory leaks accumulate; in severe cases of memory leeks they need to reboot their servers
and initialize their lexicon from the scratch).
For this exercise all the credit is given just for successful testcases (but the performance and
memory leak questions may arise during the code reviews that we will schedule separately).

Input
The syntax for any input file has the first line

OrderingMode
...
I wordToInsert1 wordToInsert2 ...
...
E wordToErase1 wordToErase2 ...

4

...
G wordToGet
...
L keyToLocate
...
D _ _
D wordBegin _
D _ wordEnd
D wordBegin wordEnd
...
F

All input files will be valid - regarding the format and the limitations defined above. Explana-
tions of the notation used in the input files:

• “OrderingMode” takes one of the following values: LEX, SHORTLEX, COLEX (this determines
the key ordering in your AVL tree – it is lexicographic, shortlex or colexicographic respec-
tively). If two words are equal (w.r.t. their primary differences, i.e. with ignore-case),
then upper-case letters always precede the lower-case letters (see the tertiary difference
defined above).

• “wordToInsert1” etc. are the words that should be inserted in the lexicon with values 1
(or their badness should be incremented by 1, if they already exist).

• “wordToErase1” etc. are the words that should be erased from the lexicon.

• “wordToGet” is the key for which we want to know its value (the current badness).

• “keyToLocate” is the key for which we want to know its location in the AVL tree.

• “wordBegin” and ”wordEnd” are two endpoints of the interval for which we dump the
entries in our lexicon. (either of them or both can be underscore; then the respective
endpoint is not checked).

• F is the marker of the end of the input; it always appears on the last line of the input.

Output
Commands “insert” and “erase” produce no output, but commands “get”, “locate” and “dump”
print the corresponding line number (where it appears in the input file) and the result of the
query. For “get” it is either the entry (key,value) or (key,0) – if the word key was not found
(and its badness is consequently 0).
For “locate” command it is the location starting with an asterisk and letters ”L” and ”R”. For
“dump” it is an ordered list of entries.

5

Sample Input and Output

Sample input test01in.txt:

1 COLEX
2 I abate abatija abats abats abi abinieki abonements
3 G abats
4 G abi
5 E abinieki abpus abra
6 G abinieki
7 L abi
8 L abats
9 L abi

10 D _ _
11 D ATE zzzzzats
12 D zz aa
13 F

Expected output test01expected.txt:

1 3 (abats,2)
2 4 (abi,1)
3 6 (abinieki,0)
4 7 *LR
5 8 *
6 9 N
7 10 (abatija,1) (abate,1) (abi,1) (abats,2) (abonements,1)
8 11 (abate,1) (abi,1) (abats,2)
9 12

Due to the colexicographic ordering, the keys in the AVL tree should be ordered like this:

abatija ≺colex abate ≺colex abi ≺colex abinieki ≺colex abats ≺colex abonements.

Looking at 3-letter suffixes makes it obvious: ija, ate, abi, eki, ats, nts (the word ending with
”a” comes first, etc.).
This order of the keys (colexicographic in this case) should be always respected as we build
the BST. Furthermore, there are some rotation steps (named “treenode restructurings” in the
textbook) and other manipulations related to the BST insert and erase commands.

• Right after abinieki is inserted, the AVL balancing property is violated in the right child
of the root (node abats). We denote it with its child and grandchild (in the direction
where the height is excessive). After the rotation we rearrange nodes as shown in Figure 2.

• Right after abonements is inserted, the AVL balancing property is violated in the root
itself. The rotation is shown in Figure 3.

• When abi is deleted, it is replaced by its in-order successor abats. See Figure 4. No
restructuring is needed in this case (but in other situations the AVL balance condition
might be violated after restructuring and in these cases you should rotate).

6

Note. When deleting any internal node from a BST, there is a choice (and both options are
technically possible as they both preserve the BST ordering invariant): we could take either the
in-order predecessor or the in-order successor of the node you are deleting. In this exercise you
should avoid ambiguity and always delete the in-order successor, if there is one. (Otherwise
the testcases will not match.)

Figure 2: Restructuring right after inserting abinieki.

Figure 3: Restructuring right after inserting abonements.

Figure 4: Erasing abinieki.

7

