Library CSEnotes_predicates
Back to Coq Main Page
Date: 2020-01-02. Tested with Coq version 8.8.1.
The following examples are based on the Class Notes from SUNY Buffalo CSE 191 "Discrete Structures", Pages 30-49.
Predicates and Quantifiers
The following examples are based on the Class Notes from SUNY Buffalo CSE 191 "Discrete Structures", Pages 30-49.
General Predicate Logic
Section Pred_Examples.
Variables A : Set.
Variables P Q : A->Prop.
Lemma ex_dist_or_for : (exists x:A, P x \/ Q x) -> (ex P) \/ (ex Q).
Proof.
intro H.
destruct H.
destruct H.
left.
exists x.
exact H.
right.
exists x.
exact H.
Qed.
Lemma demorgan_forall : (forall x : A, P x) -> ~ (exists y : A, ~P y).
Proof.
intro H.
unfold not.
intro H0.
destruct H0.
apply H0.
apply H.
Qed.
Lemma demorgan_forall_another: (forall x : A, P x) -> ~ (exists y : A, ~P y).
Proof.
intro H.
intro H1.
destruct H1.
destruct H0.
apply H.
Qed.
Odd and Even Natural Numbers
- "even0" states that 0 is an even number.
- "evenS" states that a successor to a successor of an even number is even: In regular algebra (S (S x)) would be written as (x+1)+1.
Require Import Arith.
Inductive even : nat -> Prop :=
even0 : even 0
| evenS : forall x:nat, even x -> even (S (S x)).
Prove that 1 is not an even number.
Tactic "inversion" tries to find all cases
how we could get number "1" (defined as
(S 0)) from the cases defining
even numbers. No cases match it, so the
proof is complete.
Lemma not_even_1 : ~even 1.
Proof.
intros even1.
inversion even1.
Qed.
Prove that 2*n is always even.
Lemma even_double_p : forall n, even(2*n).
Proof.
induction n.
simpl.
apply even0.
simpl.
rewrite Nat.add_succ_r.
apply evenS.
exact IHn.
Qed.
Proof.
induction n.
simpl.
apply even0.
simpl.
rewrite Nat.add_succ_r.
apply evenS.
exact IHn.
Qed.
Prove that adding 10 to an even number is also even.
Lemma even_plus10_p : forall n, even n -> even (n + 10).
Proof.
induction n.
intro H0.
apply evenS.
apply evenS; apply evenS; apply evenS; apply evenS.
exact H0.
intro H1.
inversion H1.
repeat rewrite -> Nat.add_succ_r.
apply evenS; apply evenS; apply evenS; apply evenS; apply evenS.
simpl.
apply evenS.
rewrite plus_0_r.
exact H0.
Qed.
Proof.
induction n.
intro H0.
apply evenS.
apply evenS; apply evenS; apply evenS; apply evenS.
exact H0.
intro H1.
inversion H1.
repeat rewrite -> Nat.add_succ_r.
apply evenS; apply evenS; apply evenS; apply evenS; apply evenS.
simpl.
apply evenS.
rewrite plus_0_r.
exact H0.
Qed.
Prove that 2*n+1 is never even.
Lemma odd_notdouble_p : forall n, ~even(2*n+1).
Proof.
induction n.
simpl.
intros H1even.
inversion H1even.
simpl.
rewrite Nat.add_succ_r.
rewrite plus_0_r.
rewrite plus_0_r.
intro HSneven.
inversion HSneven.
destruct IHn.
simpl.
rewrite plus_0_r.
rewrite Nat.add_1_r.
rewrite <- Nat.add_succ_r.
exact H0.
Qed.
Print even.
Proof.
induction n.
simpl.
intros H1even.
inversion H1even.
simpl.
rewrite Nat.add_succ_r.
rewrite plus_0_r.
rewrite plus_0_r.
intro HSneven.
inversion HSneven.
destruct IHn.
simpl.
rewrite plus_0_r.
rewrite Nat.add_1_r.
rewrite <- Nat.add_succ_r.
exact H0.
Qed.
Print even.
Every even number can be expressed as 2*y.
Lemma even_mult : forall x, even x -> exists y, x = 2*y.
Proof.
intros x H.
elim H.
exists 0.
ring.
intros x0 Hx0even IHx0.
destruct IHx0 as [y Heq].
rewrite Heq.
exists (S y).
ring.
Qed.
Proof.
intros x H.
elim H.
exists 0.
ring.
intros x0 Hx0even IHx0.
destruct IHx0 as [y Heq].
rewrite Heq.
exists (S y).
ring.
Qed.
Square function that is never even.
Lemma even_cp_p : forall n, even n -> ~even(n*n + 2*n + 7).
Proof.
induction n.
intro H0even.
simpl.
intro H7even.
inversion H7even.
inversion H0.
inversion H2.
inversion H4.
intro HSneven.
apply even_mult in HSneven.
destruct HSneven.
rewrite H.
assert (HOdd : exists m, 2 * x * (2 * x) + 2 * (2 * x) + 7 = 2*m + 1).
exists (2*x*x + 2*x + 3).
ring.
destruct HOdd.
rewrite H0.
apply odd_notdouble_p.
Qed.
Proof.
induction n.
intro H0even.
simpl.
intro H7even.
inversion H7even.
inversion H0.
inversion H2.
inversion H4.
intro HSneven.
apply even_mult in HSneven.
destruct HSneven.
rewrite H.
assert (HOdd : exists m, 2 * x * (2 * x) + 2 * (2 * x) + 7 = 2*m + 1).
exists (2*x*x + 2*x + 3).
ring.
destruct HOdd.
rewrite H0.
apply odd_notdouble_p.
Qed.