
Discrete Structures: Homework 2
Hints
You are not required to read or to do anything with
these hints. They are provided just in case you find
unsurmountable difficulties with any HW2 problem.

Problem 1 (Coloring Invariant: This is a Problem
50 from your textbook (Rosen2019, p.115).
You could read 1.8.8 Tilings chapter from the textbook:
(Rosen2019, pp. 108-111) textbook. It shows that cer-
tain chess-boards cannot be divided into 1 × 2 rectan-
gles. You should answer some questions:

• How to color any chessboard so that every rect-
angle 1 × 3 has certain colors, no matter how it
is positioned?

• As we know, a square has various symmetries
(you can rotate or flip it). Clearly, some of the
64 choices (how to cut one tile) can be reduced
to a small number of subcases (for example, it
really does not matter which corner tile you re-
move; ability/inability to cut into rectangles will
preserve. Make sure that you know, which sub-
cases are independent.

Note. There are multiple ways to build new prob-
lems out of this. Many are used in high-school math-
ematics. See e.g. MIT paper on tilings: https:
//bit.ly/2v1ddBJ, also one written by Agnese Z.
and Maruta A. (LU Neklātienes matemātikas skola):
https://bit.ly/31jimRL.

Problem 2 (Segment-Line Bijection): The problem
asks, if the number of points on the open line segment
(0; 1) (or the half-open segment [0; 1)) is the same as
the set of all real numbers. See https://bit.ly/
3b9NoQT for a discussion, how a unit circle can be
mapped to the line of real numbers. There are some
technical differences between this problem and your
problem:

• A circle is a different line segment. Angles
change from 0 to 2π (not necessarily in the in-
terval you need).

• In the part (b) you should be careful, where
you map the point x = 0. Unsurprisingly, it
is easier to map open intervals (a; b) into open
line (−∞;+∞) than half-open or closed intervals
[a; b) or [a; b]. But all these cases are doable:
clearly all the line segments (large and small)
have bijections to R.

Note. All kinds of variations can be invented – how
about a bijection from a union of two line segments
([0; 1] ∪ [2; 3]) and the set of all real numbers? Or to

the set [0;+∞)? Or to all the infinite sequences of 0s
and 1s?

Problem 3 (Continuous functions are same as re-
als: This seems somewhat surprising: The number of
all continuous functions f : R → R is the same as
the number of real numbers R. It might seem that
there should be more ways to draw a wiggly contin-
uous curve on a paper than there are points on a line,
but, in fact, these are the same set cardinalities.

• To prove this, you actually need to use the fact
that all functions are continuous: It is enough to
know their values in all the rational points (this
was given in your problem).

• The big trick is to show how to encode a (con-
table) set of infinite decimal fractions as a sin-
gle decimal fraction. You might need to remem-
ber infinite Hilbert hotel (and hosting infinitely
many infinite lines of guests there).

• If you use decimal notation, please make sure
that you handle the cases where 0.4(9) = 0.5(0)
correctly. Some numbers have two decimal rep-
resentations. If you do not use decimal notation,
then you do not have this worry (but you may
have other worries).

Problem 4: This is a problem of how a “naive” al-
gorithm might work: a loop in a loop in a loop, etc.
Your task is to count the nested loops carefully. And
give some estimates on how many times each loop is
executed. For example, if you run 3 nested loops over
n elements (or, perhaps, even n/2 loops over at least
n/2 elements each), you get O(n2) time already.
In this problem you simply count the steps.

Problem 5:

• It turns out that it is possible to do better than
(n − 1) + (n − 2) = 2n − 3 (first find the largest
element from n elements; then find the smallest
element from the n − 1 remaining ones).

• Maximum finding by simply comparing the cur-
rent maximum with everything in the list does
not yield useful information for finding mini-
mum. You just learn that there are lots of num-
bers less than your current maximum.

• It is possible to do comparisons so that each
comparison yields information both for the
largest and the smallest elements.

Problem 6: This is a proof related to Problem 5 (prove
that it is possible to spend just (3/2)n − 2 comparisons

https://bit.ly/2v1ddBJ
https://bit.ly/2v1ddBJ
https://bit.ly/31jimRL
https://bit.ly/3b9NoQT
https://bit.ly/3b9NoQT


2or similar). Part (b) shows a new “superoptimistic”
time metric: Assume that you already know the right
answer. How long will it take to prove that you were
right? Usually it is easier to reason in these situations,
because you do not need to sort through different sub-
cases or find out new truths. Just demonstrate your
answer.

Problem 7: This is Problem 27 from (Rosen2019,
p.214). Ternary search does not differ very much from
the binary; there are different comparisons to make in
order to know which path to follow.
Ternary search may sometimes be useful, if it is more
convenient to create trees that branch three ways in-
stead of two ways. This could happen, e.g. in a
database, if the memory page (depends on hardware)
fits exactly one such 3-way branching node, but storing
2-way branching node would be wasteful.

Problem 8: This is a variant of Problem 10 from
(Rosen2019, p.214). Repetitive squaring a number is
much more efficient to compute large powers (com-
pared to repetitive multiplication). To get x1024 you
need either to square just 10 times in order to get x2,
x4 = x22

, x8 = x23
, . . ., x210

. It is 10 multiplications
rather than 1023.

There is still a challenge - what happens if the power
is not 2n? How to pick and multiply known values a20

,
a21

, a22
, etc. to get ab?

Problem 9: This is a variant from Problem43
(Rosen2019, p.259). In modular arithmetic you can
do most of the operations with congruences (add, sub-
tract, multiply). This problem shows that there are
some things that you cannot do. These examples are
not difficult to find; you just need to be flexible with
what you select as m.

Problem 10: Clearly all the powers dn (remainders,
if divided by 41) will eventually start to repeat them-
selves, since every remainder dk leads to the next re-
mainder d · dk = dk+1. The only problem: For many d,
these powers start to loop too fast. Much faster than it
takes to consider all the 40 possible values.
So your task is to find a d (just one of them, if there are
several) such that the powers dn take all the 40 values
between 0 and 41.
Note. This problem leads to the Diffie-Hellman cryp-
tography algorithm. Restoring integer n (modulo m)
from dn (same modulo m) is named discrete logarithm.
See https://bit.ly/2RP2aVe.

https://bit.ly/2RP2aVe

