
Discrete Structures: Homework 2
Due Date: February 10, 2020. Submit PDF file to the
"Homework 2" folder in ORTUS.

Problem 1: A standard 8 × 8 chessboard has one of
the squares removed (you do not know which one), so
now it only has 63 squares. Is it possible to cut the re-
maining chess-board into 21 rectangles of sizes 1 × 3?

Problem 2: Define a bijective (one-to-one and onto)
function betweeen:
(a) The line segment (0; 1) and the set of all real num-
bers.
(b) The line segment [0; 1) and the set of all real num-
bers.

Problem 3: Define a bijective function between the set
A of all continuous functions f : R → R and the set
R itself.
Hint. You can use the fact that two continuous func-
tions f1, f2 : R→ R are equal, iff they are equal for all
their rational arguments:

(∀x ∈ Q, (f1(x) = f2(x))) ↔ (f1 ≡ f2).

(This fact can be proven so that, if f1(x) , f2(x) for
some irrational argument x < Q, then either f1 or f2
(or both) are no longer continuous. You do not need to
do this proof.)

Problem 4: Suppose we have n subsets S 1, . . . , S n of
the set {1, 2, . . . , n}. There is a brute-force algorithm
that determines whether there is a disjoint pair of these
subsets. It loops through the subsets; for each subset
S i, it then loops through all other subsets; and for each
of these other subsets S j, it should loop through all
elements k in S i to determine whether k also belongs
to S j.
Give a big-O estimate for the number of times the algo-
rithm needs to determine whether an integer is in one
of the subsets.

Problem 5: Assume that every comparison between
two numbers costs you 1 eurocent (other CPU time and
memory cost you nothing).
Describe the optimal algorithm for finding both the
largest and the smallest integer in a finite list of n dif-
ferent integers (the list is unsorted). You can describe
the steps of that algorithm in human language or pseu-
docode similar to the K.Rosen’s textbook.

Problem 6: You are given n coins with different
weights. You should find the lightest and the heaviest
coin using scales that allow to compare two coins at a
time.
(a) Does there exist an algorithm that can find the light-

est+heaviest coin using less than (3/2)n − 2 compar-
isons? Justify your answer.
(b) What is the smallest number of comparisons to
demonstrate (e.g. as a forensics expert in a court)
which is the lightest and the heaviest coin, if that foren-
sics expert has already somehow guessed the right an-
swer.

Problem 7: The ternary search algorithm locates an
element in a list of strictly increasing integers by suc-
cessively splitting the list into three sublists of equal
(or as close to equal as possible) size, and restricting
the search to the appropriate piece. Write in detail the
steps of this algorithm. How many comparisons does
it need in the worst possible situation?

Problem 8: You have two large numbers a, b (both can
have up to 100 digits in decimal notation). You want to
compute ab using a “black box” that can multiply two
numbers of any size, and one multiplication costs 1 eu-
rocent. How many eurocents would it cost to compute
ab in the worst case?
Hint. One can clearly do this better than brute force:
with up to 10100 − 2 multiplications (just multiply a
to itself b − 1 times). For example, computing a4 can
be done by just two multiplications: a2 = a · a, and
a4 = a2 · a2. You do not need to spend three multipli-
cations like this: a4 = a · a · a · a.

Problem 9: Find counterexamples to show that all the
propositions given below are wrong:
(a) If there is an integer m > 2, ac ≡ bc (mod m),
and c . 0 (mod m), then one can cancel non-zero
multiplier c on both sides of the congruence:

a ≡ b (mod m).

(b) If m ≥ 2 is an odd number, and positive inte-
gers a, b, c, d satisfy both a ≡ c (mod m) and c ≡
d (mod (m − 1)), then

ac ≡ bd (mod m).

Problem 10: Alice and Bob have agreed to use pow-
ers of number d in order to send each other mes-
sages. When Alice guesses a positive integer n ∈
{1, 2, . . . , 40}, she does not send that integer n directly,
but instead she computes and sends the remainder, if
dn is divided by 41.
Find an example of a number d that Alice and Bob can
agree on, so that Bob can always understand, which n
Alice meant, just looking at the remainder of dn.
(You may need a computer and a 2-3 lines of Python
code to find this out.)

