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Problem 1 (Rosen2019, #33, p.444) – After 6.4.
Prove that if n is a positive integer, then

n∑
k=1

k ·
(
n
k

)
= n · 2n−1.

Problem 2 (Rosen2019, #48, p.456) – After 6.5.
A shelf holds 12 books in a row. How many ways
are there to choose five books so that no two adjacent
books are chosen?

Problem 3 (Rosen2019, #16, p.464) – After Ch.6.
Show that in any set of n + 1 positive integers not ex-
ceeding 2n there must be two that are relatively prime.

Problem 4 (Rosen2019, #33, p.465) – After Ch.6.
How many bit strings of length n, where n ≥ 4, contain
exactly two occurrences of 01.

Problem 5 (Miller2014, Exercise1.18 https://bit.ly/
2TfZErQ) The Theory and Applications of Benford’s
Law. Steven J. Miller (editor).
Compute the values of this function f (x) =

∣∣∣x2 · tan x
∣∣∣

for all integers x ∈ {1, . . . , 100000}. Record the very
first digit that appears in every value f (x).
(A) What is the ratio of the digit 1 among these 105

digits (empirical probability)?
(B) What is the theoretical ratio of the first digit 1 pre-
dicted by the Benford’s law?
Note. Benford’s Law is routinely checked by people
who falsify the results of elections or otherwise fabri-
cate large amounts of data. Generating digits with the
uniform random distribution (where each digit has the
same chance to appear) would create data sets that look
highly artificial when statistically examined.

Problem 6 (Rosen2019, #23, p.503) – After 7.3.
Suppose that E1 and E2 are the events that an incom-
ing mail message contains the words w1 and w2, re-
spectively. Assuming that E1 and E2 are independent
events and that (E1 | S ) and (E2 | S ) are independent
events, where S is the event that an incoming message
is spam, and that we have no prior knowledge regard-
ing whether or not the message is spam, show that

P (S | E1 ∩ E2) =

=
P(E1 | S ) · P(E2 | S )

P(E1 | S ) · P(E2 | S ) + P(E1 | S ) · P(E2 | S )
.

Problem 7 (Rosen2019, #39, p.519) – After 7.4.
Suppose that the number of aluminum cans recycled in
a day at a recycling center is a random variable with an
expected value of 50000 and a variance of 10000.
(A) Use Markov’s inequality (Exercise 37) to find an

upper bound on the probability that the center will re-
cycle more than 55000 cans on a particular day.
(B) Use Chebyshev’s inequality to provide a lower
bound on the probability that the center will recycle
40000 to 60000 cans on a certain day.

Problem 8 (Rosen2019, #15, p.522) – After Ch.7.
Suppose that m and n are positive integers. What is the
probability that a randomly chosen positive integer less
than mn is not divisible by either m or n?

Problem 9 (Rosen2019, #22, p.523) – After Ch.7.
Suppose that n balls are tossed into b bins so that each
ball is equally likely to fall into any of the bins and that
the tosses are independent.
(A) Find the probability that a particular ball lands in a
specified bin.
(B) What is the expected number of balls that land in a
particular bin.
(C) What is the expected number of balls tossed until
a particular bin contains a ball?
(D) What is the expected number of balls tossed until
all bins contain a ball?
Hint: Let Xi denote the number of tosses required to
have a ball land in the ith bin once i − 1 bins contain a
ball. Find E(Xi) and use the linearity of expectations.

Problem 10 (Rosen2019, #30, p.524) – After Ch.7.
Use Chebyshev’s inequality to show that the probabil-
ity that more than 10 people get the correct hat back
when a hatcheck person returns hats at random does
not exceed 1/100 no matter how many people check
their hats.
Hint. See Example 6, (Rosen2019, p.507) about the
random hat assigning experiment and Exercise 43,
(Rosen2019, p.520) about the fixed elements in a ran-
dom permutation.

https://bit.ly/2TfZErQ
https://bit.ly/2TfZErQ
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Answers

Problem 1
We can apply the first derivative to the expression
y = (1 + x)n:

y′ = n · (1 + x)n−1.

If we plug in the value x = 1, we would get

y′(1) = n · 2n−1. (1)

On another hand, we can also expand the expression
for (1 + x)n using the binomial formula and only then
compute its derivative.

y =
(
n
0

)
1 +

(
n
1

)
x1 +

(
n
2

)
x2 + . . . +

(
n
n

)
xn.

Now compute it as a derivative of a sum:

y′ = 0 +
(
n
1

)
x0 + 2 ·

(
n
2

)
x1 + . . . + n ·

(
n
n

)
xn−1.

Substituting x = 1 again we get that

y′(1) =
n∑

k=1

k ·
(
n
k

)
. (2)

We expressed y′(1) in two different ways in (1) and (2),
so they must be equal:

n∑
k=1

k ·
(
n
k

)
= n · 2n−1.

Problem 2
Denote by n0, n1+1, n2+1, n3+1, n4+1, n5 the numbers
of those books that are not chosen. In particular, n0 is
the number of books to the left of all chosen books;
n1 + 1 is the number of books between the first and the
second chosen book, etc. Finally, n5 is the number of
books to the right of all five books. Since no two books
are adjacent, all the n1 + 1, . . . , n4 + 1 are strictly posi-
tive. Therefore, n0, n1, n2, n4, n5 are all nonnegative.
We also know that n0+n1+n2+n4+n5 = 3. The number
of non-negative solutions for this integer equation with
six variables is known as the combination with repe-
titions, where we select exactly k = 3 items out of a
set of n = 6 different elements (for example, we make
an unordered “handful” of three balls, where each ball
can be in any of six colors).
The formula to compute combination with repetitions
is this:(

n + k − 1
k

)
=

(
6 + 3 − 1

3

)
=

(
8
3

)
=

8!
3! 5!

= 56.

Problem 3
Split all 2n integers into pairs (1; 2), (3; 4), . . ., (2n −

1; 2n). Since we choose n+1 positive integers and there
are only n pairs, by Pigeonhole principle there will be
two selected numbers from the same pair. Denote them
by (2k − 1; 2k).
It is easy to see that two adjacent numbers 2k − 1 and
2k must be mutually prime, since any common divisor
d for both of them is also a divisor of their difference
2k − (2k − 1) = 1. Therefore d = ±1.

Problem 4
Let us represent the sequence of n bits (containing ex-
actly two substrings 01) split into eight consecutive
chunks – all but two of them can be empty:

1 . . . 1︸︷︷︸
n1

0 . . . 0︸︷︷︸
n2

01 1 . . . 1︸︷︷︸
n3

0 . . . 0︸︷︷︸
n4

01 1 . . . 1︸︷︷︸
n5

0 . . . 0︸︷︷︸
n6

.

There are two chunks to the left of the first instance of
01; at first there are any number n1 ≥ 1 of “ones”, fol-
lowed by any number of n2 ≥ 0 “zeroes”. Then come
exactly two digits 01; and then the pattern repeats itself
– some n3 “ones”, n4 “zeroes”, then there are another
two digits 01, then again n5 “ones” and n6 “zeroes”.
We claim that any string satisfying the condition of the
problem looks in this way (perhaps, some of ni can be
equal to 0 and thus the corresponding digits will be
absent). Any situation, where some digits “zeroe” are
followed by “one” would result to more instances of
01.
We must therefore find the number of non-negative so-
lutions for the following integer equation:

n1 + n2 + n3 + n4 + n5 + n6 = n − 4.

Their sum equals n − 4 because two pairs of 01 are
removed from a sequence of exactly n bits. The num-
ber of solutions equals the combinations with repeti-
tion where we select a “handful” of n − 4 items, where
every item can be in any of 6 colors.
We can represent this as a problem to arrange n − 4
circles with 5 separators. The total number os such
arrangements is expressed with the formula of combi-
nations with repetition:(
(n − 4) + 5

5

)
=

(
n + 1

5

)
=

(n + 1)n(n − 1)(n − 2)(n − 3)
5!

.

We can show the number of such sequences S n for
some small n in this table:

n 4 5 6 7 8 9 10 11
S n 1 6 21 56 126 252 462 792

Problem 5

(A) We can compute all the values of the function
|x2 · tan x| and extract all the first digits. We get exactly
29904 members of the digit sequence (out of 100000)
that are equal to 1.
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(B) Benford’s distribution is computed using the for-
mula

P(d) = log10(d + 1) − log10 d,

where d = 1, . . . , 9. In particular, P(1) = 0.30103. The
empirical distribution of all the first digits and also the
theoretical (Benford) distribution is shown in the table.

Digit Empirical Benford
1 29904 0.30103
2 17514 0.17609
3 12479 0.12494
4 9718 0.09691
5 8006 0.07918
6 6776 0.06695
7 5871 0.05799
8 5146 0.05115
9 4586 0.04576

Figure 1. Empirical and Benford distributions.

Note. As we see the empirical distribution is very close
to the Benford’s distribution. This has nothing to do
with any particular properties of the function |x2 · tan x|
(besides the fact that this function takes all kinds of
large values).

Problem 6
Note that the formula (3) that you have to prove is
wrong:

P (S | E1 ∩ E2) =

=
P(E1 | S ) · P(E2 | S )

P(E1 | S ) · P(E2 | S ) + P(E1 | S ) · P(E2 | S )
.

(3)

To see that it is wrong, assume that the conditional
probabilities P(Ei | S ) and P(Ei | S ) do not dif-
fer very much, but the probability of spam is very
low: P(S ) << P(S ). In this case we should get that
P (S | E1 ∩ E2) is also very small (because the events
E1, E2 do not provide any useful evidence), but spam
is very unlikely. On the other hand, the formula would
imply that the probability of spam is around 1/2, since
we assumed that P(E1 | S ) ≈ P(E1 | S ) and P(E2 |

S ) ≈ P(E2 | S ), so the denominator is about two
times larger than the numerator. In the textbook this
was caused by an assumption that P(S ) = P(S ) = 1

2 ;
see (Rosen2019, p.498).
Let us obtain and prove a correct formula. Apply the
(regular) Bayes formula for the conditional probabil-
ity of spam event S , assuming that the event E1 ∩ E2
already holds. We get this:

P (S | E1 ∩ E2) =

=
P((E1 ∩ E2) | S ) · P(S )

P((E1 ∩ E2) | S ) · P(S ) + P((E1 ∩ E2) | S ) · P(S )
.

(4)

The notation (E1 | S ) ∩ (E2 | S ) means that in the
event universe S (“assuming the spam event S al-
ready holds”) both the event E1 and E2 have happened.
Therefore

P((E1 ∩ E2) | S ) =
=P((E1 | S ) ∩ (E1 | S )) = P(E1 | S ) · P(E2 | S ) (5)

The first equality rewrites the intersection E1 ∩ E2 in
the conditional event space (assuming that S has al-
ready happened). The second equality holds, because
it was known that (E1 | S ) and (E2 | S ) are mutually
independent.
Similar identities hold in the complementary condi-
tional event space (assuming that S has happened and
this is not a spam):

P((E1 ∩ E2) | S ) =

=P((E1 | S ) ∩ (E1 | S )) = P(E1 | S ) · P(E2 | S ) (6)

Indeed, if the last equality in (6) would not hold, then
we would get

P(E1 ∩ E2) = P((E1 ∩ E2) | S ) + P((E1 ∩ E2) | S ) ,

,P(E1 | S ) · P(E2 | S ) + P(E1 | S ) · P(E2 | S ) =
=P(E1) · P(E2) (7)

This would contradict the fact that E1 and E2 are inde-
pendent (in the original event space).
In other words, both events (E1 | S ) and (E2 | S )
should also be independent. Therefore:

P((E1 ∩ E2) | S ) =

=P((E1 | S ) ∩ (E1 | S )) = P(E1 | S ) · P(E2 | S )

Now we can rewrite the Bayes formula from (4) and it
completes the proof.

P (S | E1 ∩ E2) =

=
P((E1 ∩ E2) | S ) · P(S )

P((E1 ∩ E2) | S ) · P(S ) + P((E1 ∩ E2) | S ) · P(S )
=

=
P(E1 | S ) · P(E2 | S ) · P(S )

P(E1 | S ) · P(E2 | S ) · P(S ) + P(E1 | S ) · P(E2 | S ) · P(S )
.

(8)
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Formula (8) is always correct. It becomes (3) only if
P(S ) = P(S ) = 1

2 ; in this case these factors can be can-
celled. (In the context of the given problem this would
mean that there are equal number of known spam mes-
sages and also non-spam messages used to train the
spam-detection machine learning algorithm.)

Problem 7
(A) We know that X ≥ 0 (there are no negative num-
bers of cans); and the mean value of processed cans is
E(X) = 50000. By Markov’s inequality we get for any
a > 0:

P(X ≥ a) ≤ E(X)
a
. (9)

We can replace a = 55000, and get:

P(X ≥ 55000) ≤ 50000
55000

=
10
11
= 0.9090909.

The problem actually asks, what is the probability that
more than 55000 cans will be processed. We can esti-
mate:

P(X > 55000) ≤ P(X ≥ 55000) ≤ 10
11
.

Namely, the probability is at least 10
11 . We cannot

get any better estimate, since we could have P(X =
55000) = 0, and then P(X > 55000) = P(X ≥ 55000).
Note. We could claim a slightly better inequality, since
P(X > 55000) for integer number of cans means that
P(X ≥ 55001) and by (9) where a = 55001 we would

P(X ≥ 55001) ≤ 50000
55001

= 0.9090744.

(B) Chebyshev’s inequality is this:

P(|X − E(X)| ≥ r) ≤ V(X)
r2 . (10)

If we plug in the given values E(X) = 50000, V(X) =
10000, and also set r = 10000, we would get

P(|X − 50000| ≥ 10000) ≤ 10000
100002 = 0.0001.

We also can see that P(|X − 50000| > 10000) ≤
0.0001, because the strict inequality is satisfied by
fewer events. For this reason, the probability of the
opposite event (that the center recycles cans within the
interval [40000; 60000]) is at least 0.9999.
Note. As before we could get a slightly better estimate
with r = 10001 substituted in (10):

P(|X − 50000| ≥ 10001) ≤ 10000
100012 .

And therefore X ∈ [40000; 60000] with the opposite
probability:

1 − 10000
100012 ≈ 0.999900019997 > 0.999900019.

But even a (not so optimal) lower bound 0.9999 is per-
fectly fine.

Problem 8
We consider two cases: either m, n are mutually prime
or they are not.
(A) If gcd(m, n) = 1, then in the interval I = [1; mn]
there are exactly m numbers divisible by n, and exactly
n numbers divisible by m. (One of them: mn is also
divisible by both - it is the smallest number that is di-
visbible by both m and n).
Therefore, if we drop the number mn (the problem
asked to consider only positive integers strictly less
than mn), we would get exactly (mn − 1) − (m − 1) −
(n− 1) = mn−m− n+ 1 numbers that are not divisible
by either m or n. The probability to get such number at
random is:

P =
mn − m − n + 1

mn − 1
.

(B) If gcd(m, n) > 1 and they are not mutually prime,
then there is the smallest number lcm(m, n) < mn that
is divisible by both of them. And all the multiples of
this least common multiplier are also divisible by both
m and n. All together there are mn

lcm(m,n) = gcd(m, n)
numbers in the interval I = [1; mn] divisible by both
numbers m and n.
Just as before, there are m numbers divisible by n (and
n numbers divisible by m).
Now drop the largest number mn in the interval I =
[1; mn] and consider a slightly smaller interval I′ =
[1; mn − 1]. As we apply the principle of inclu-
sion/exclusion, there are

(mn − 1) − (m − 1) − (n − 1) + (gcd(m, n) − 1) =

= mn − m − n + gcd(m, n)

numbers not divisible by either m or n. The probability
to get such number at random is:

P =
mn − m − n + gcd(m, n)

mn − 1
. (11)

We see that the case (A) is a partial case of this formula

Problem 9
(A) The probability is 1/b, since all b bins are equally
likely to receive the current ball.

(B) Once we thrown n balls independently, we can de-
note by X1, . . . , Xn the independent random variables,
wheren Xi means that the ith ball was thrown in our
specified bin. The expected value of their sum is the
sum of expected values:

P(X1 + . . . + Xn) = E(X1) + . . . + E(Xn) =
n
b
.

(C) Denote by X the random event that the particular
bin gets the ball for the first time. We get

P(X = k) =
(

b − 1
b

)k−1

· 1
b
.
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Namely, k − 1 times the ball is thrown in any other bin
but the given one, at the last step it is thrown in the one
given bin.
We should find the infinite sum:

E(X) = P(X = 1) · 1+ P(X = 2) · 2+ P(x = 3) · 3+ . . . .

To find this sum, consider the following function:

F(x) =
x
b

(
1 +

(b − 1)x
b

+
(b − 1)2x2

b2 +
(b − 1)3x3

b3 + . . .

)
.

On one hand, we can find the function F(x) in terms of
parameters b, x (it is an infinite decreasing geometric
series). On the other hand, the derivative of this func-
tion F′(x = 1) is equal to the infinite sum for E(X).
After some calculus we get that

F(x) =
x

b − (b − 1)x
, F′(x) =

b
(b − (b − 1)x)2 .

Substituting x = 1 in F′(x) we get

F′(1) =
b

(b − (b − 1) · 1)2 = b.

Therefore the expected number of balls to be dis-
tributed until the specific bin gets its first ball is E(X) =
b.

(D) TBD

Problem 10
For any number of n hats, denote by the random vari-
able X the number of fixed points (for any random
permutation π of the hats). A fixed point is whenever
π(i) = i. It can be shown that the mean value E(X) = 1
and also the variance V(X) = 1. See Problem 5 in
https://bit.ly/2X5e92l.

By Chebyshev’s inequality,

P(|X − E(X)| ≥ r) ≤ V(X)
r2 .

In particular, if r = 10 (and we also know that E(X) =
1 and V(X) = 1), then P(|X − 1| ≥ 10) ≤ 1

100 .

Since X is nonnegative, |X − 1| ≥ 10 is equivalent
to X ≥ 11, i.e. more than 10 people get their hats
back; and this probability does not exceed 1

100 . (In
fact, Chebyshev’s inequality is just a rough estimate;
in most cases the probability of > 10 people getting
their hats back is considerably smaller than that.)

https://bit.ly/2X5e92l
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