
Discrete Homework 4
Problem 1 (Rosen2019, #60, p.649) – After 9.5.
(A) Let R be the relation on the set of functions from
Z+ to Z+ such that (f , g) belongs to R if and only if f is
Θ(g) (see Section 3.2). Show that R is an equivalence
relation.
(B) Describe the equivalence class containing f (n) =
n2 for this equivalence relation. (Your description
could use predicate/quantifier expression satisfied by
all functions h : Z+ → Z+ equivalent to f (n) = n2.)
Note. Big-Theta Definition (Rosen2019): Function
f (x) is in Θ(g) iff there are positive real numbers C1
and C2 and a positive real number k such that

C1 |g(x)| ≤ | f (x)| ≤ C2 |g(x)|

whenever x > k. (See Definition 3 on p.227.)

Problem 2 (Rosen2019, #64, p.649) – After 9.5.
Do we necessarily get an equivalence relation when we
form the symmetric closure of the reflexive closure of
the transitive closure of a relation?
Note. Terms reflexive closure and symmetric closure
are defined in (Rosen2019, p.628). The reflexive clo-
sure of a binary relation R is the smallest relation con-
taining R that is reflexive: R1 is obtained from R by
adding to it all pairs (a, a) (unless they are already in
R). The symmetric closure of a binary relation R is the
smallest relation R2 containing R that is symmetric (if
pair (a, b) belongs to R, then both pairs (a, b) and (b, a)
are added to R2).

Problem 3.
Suppose that winners of some lottery make a set X.
Each winner should receive two prizes from some prize
collection Y . For each subset of the set of winners
S ⊆ X the set of prizes N(S) ⊆ Y wanted by one or
more people p ∈ S satisfy

|N(S)| ≥ 2|S |.

Show that every winner can be given two prizes that
s/he wants. (Inspired by (Rosen2019, #33, p.701).)

Problem 4 (Rosen2019, #66, p.728) – After 10.4.
Suppose that you have a three-gallon jug and a five-
gallon jug. You may fill either jug with water, you may
empty either jug, and you may transfer water from ei-
ther jug into the other jug [until it is full].
(A) Use a path in a directed graph to show that you can
end up with a jug containing exactly one gallon.
(B) How many vertices and how many edges are there
in this directed graph?
(In order to build this graph of available states use an
ordered pair (a, b) to indicate how much water is in

each jug. Represent these ordered pairs by vertices.
Add an edge for each operation with the jugs.)

Problem 5 (Rosen2019, #22, p.792) – After 11.1.
A chain letter starts when a person sends a letter to
five others. Each person who receives the letter either
sends it to five other people who have never received
it or does not send it to anyone. Suppose that 10, 000
people send out the letter before the chain ends and
that no one receives more than one letter. How many
people receive the letter, and how many do not send it
out?

Problem 6 (Rosen2019, #46, p.793) – After 11.1.
How many vertices, leaves, and internal vertices does
the rooted Fibonacci tree Fn have, where n is a positive
integer? What is its height?
Note The rooted Fibonacci trees Tn are defined re-
cursively in the following way. T1 and T2 are both
the rooted tree consisting of a single vertex, and for
n = 3, 4, . . ., the rooted tree Tn is constructed from a
root with Tn−1 as its left subtree and Tn−2 as its right
subtree.

Problem 7 (Rosen2019, #25, p.820) – After 11.3.
Construct the ordered rooted tree whose preorder
traversal is a, b, f , c, g, h, i, d, e, j, k, l, where a has four
children, c has three children, j has two children, b and
e have one child each, and all other vertices are leaves.

Problem 8. Assume that somebody wants to solve the
following olympiad problem using “brute force”:

Insert any arithmetic operation symbols (+, −, ·
and /) and parentheses to get a correct equality:
(A) 3 3 7 7 = 14,
(B) 3 3 7 7 = 24.
(https://bit.ly/2JsXH5P; Pg.1, P3.)

How many different rooted trees can be obtained? In
Grade 5 there is no “unary minus” such as (−3) · 3; all
four arithmetic operations are binary.
Note. You do not need to solve the quoted olympiad
problem itself. Just count the possible expressions on
the left side that differ either by the syntax tree or by
operation(s).

Problem 9 (Rosen2019, #56, p.834) – After 11.4.
Show that it is possible to find a sequence of spanning
trees leading from any spanning tree to any other by
successively removing one edge and adding another.

Problem 10 (Rosen2019, #33, p.840) – After 11.5.
Show that if G is a weighted graph with distinct edge
weights, then for every simple circuit of G, the edge of
maximum wieght in this circuit does not belong to any
minimum spanning tree of G.

https://bit.ly/2JsXH5P

2 Answers

Problem 4
Every manipulation with water jugs reaches a final
state where either some jug is empty or some jug is full
(or both). Each pair of two water quantities (wx,wy)
can be represented by a point in the Cartesian coor-
dinates. Filling or emptying the 5-gallon jug means
moving left or right on a horizontal line (x coordinate
changes, but y stays the same). Filling or emptying the
3-gallon jug means moving up or down on a vertical
line (y coordinate changes, but x stays the same). It is
also possible to transfer water from one jug to another
until we reach a limit – this means moving a point on
a line with slope −1.
(A) Measuring 1 gallon is shown in Figure 1. Verbally
it can be described as a sequence of 4 steps:

• Initially both jugs are empty; fill the 3 gallon jug.
(Move from (0; 0) to (0; 3).)

• Transfer all water from it into the 5-gallon jug.
(Move from (0; 3) to (3; 0).)

• Fill the 3-gallon jug again. (Move from (3; 0) to
(3; 3).)

• Transfer water into the 5-gallon jug until it is
full. At that point the 3-gallon jug contains 1
gallon of water. (Move from (3; 3) to (5; 1).)

This sequence of steps is possible because of the Be-
zout identity for two mutual primes 3 and 5:

1 = 2 · 3 + (−1) · 5.

Similar construction to get 1 gallon is possible for any
other jug volumes that are mutual primes.

Figure 1. Jugs: Measuring 1 gallon.

(B) Figure 2 shows the complete graph of all states.
Some of the edges are unidirectional, and some of
them are bidirectional (water can be transfered in ei-
ther direction). There are 6 bidirectional vertical ar-
rows (of length 3) and 4 bidirectional horizontal arrows
(of length 5) – they move from one side of the rectan-
gle to another side. There are 7 slanted bidirectional
arrows. And there are also 12 points on the sides of the
rectangle (except the corners). Each one can move to

corners on either side of it – so there are 24 unidirec-
tional arrows. The total number of arrows is

2 · (10 + 7) + 24 = 58.

Answer. The total number of vertices in this graph is
16; the total number of directed edges is 58. And just
4 edges are used to measure 1 gallon in Figure 1.

Figure 2. Jugs: Graph of States.

Problem 5
Since we know that exactly 10000 people send out five
letters each (and no one gets more than one letter),
there are altogether 50000 recipients.
The number of people who do not send it out equals
to the number of leaves in this tree. Moreover, there
must be exactly 10000 − 1 = 9999 inner nodes that
are not the root. They got a letter, and also sent it out
themselves. The remaining 50000 − 9999 = 40001
recipients got the letter, but did not send it out.
Answer. 50000 and 40001.
A chain letter starts when a person sends a letter to
five others. Each person who receives the letter either
sends it to five other people who have never received
it or does not send it to anyone. Suppose that 10, 000
people send out the letter before the chain ends and
that no one receives more than one letter. How many
people receive the letter, and how many do not send it
out?

Problem 6
Figure 3 shows the first six Fibonacci trees.
We count the necessary elements in these trees (see ta-
ble).

Tree Vertices Leaves Internal Height
T1 1 1 0 0
T2 1 1 0 0
T3 3 2 1 1
T4 5 3 2 2
T5 9 5 4 3
T6 15 8 7 4

The easiest pattern is for the height. At every stage it
grows by 1, and for all n > 2:

H(Tn) = n − 2. (1)

3

Figure 3. Fibonacci trees.

The number of leaves in such trees satisfies the same
recursive law as the Fibonacci numbers: L(Tn) =
L(Tn−1) + L(Tn−2). Also the first two values L(T1) and
L(T2) are equal to the respective Fibonacci numbers:
F(1) = F(2) = 1. For this reason:

L(Tn) = F(n). (2)

In any full binary tree the number of internal nodes is
one less than the number of leaves. (Remember that a
binary tree is called full, if any vertex is either a leaf or
it has exactly two children.) We get

I(Tn) = F(n) − 1. (3)

The total number of vertices is the total of leaves and
internal nodes.

V(Tn) = 2F(n) − 1. (4)

Problem 7
As we construct the tree, we use data structure called
“stack” (last-in-first-out). At the very beginning push
the root on the stack – this is the first vertex in the pre-
order; vertex a with 4 prospective children. Every time
there is a new vertex, we perform the following steps:

(1) Pop off (i.e. delete from the stack) all those ver-
tices, which have all there “child vacancies” filled.

(2) Decrease by 1 the child counter for the first non-
nonzero vertex currently on the stack.

(3) Push (i.e. append as the last element on the stack) a
new vertex with its child counter. BTW, this newly
pushed vertex

(4) When all the child counters drop to 0 the stack be-
comes empty and the algorithm stops.

Every line below represents state of the stack at every
given moment.

a(4)
a(3) b(1)
a(3) b(0) f(0)
a(2) c(3)
a(2) c(2) g(0)
a(2) c(1) h(0)
a(2) c(0) i(0)
a(1) d(0)
a(0) e(1)
a(0) e(0) j(2)
a(0) e(0) j(1) k(0)
a(0) e(0) j(0) l(0)

When we draw the vertices in a rooted ordered graph,
it looks like Figure 4.

Figure 4. Two spanning trees.

Problem 8
Altogether there are 5 ordered rooted trees with exactly
4 leaves (and 3 inner nodes). They correspond to the
following parenthesized expressions (arithmetic oper-
ations are not shown):

((a◦b)c)d (a(b◦c))d (a◦b)(c◦d) a((b◦c)d) a(b(cd)).

The five corresponding syntax trees are shown in Fig-
ure 5.

Figure 5. Five syntax trees.

All the inner nodes in all these 5 trees are distinguish-
able: just one of the inner nodes is the root (the last
operation in the tree); and for all the other inner nodes
we know, in which subtree (or a subtree of a subtree) it
is located. Since there are just 4 arithmetic operations,
there are 5·43 = 320: We get in total 320 different ways
how to restore parentheses and arithmetic operations in
this example. So, the “brute force” is certainly possi-
ble for this problem, but it would not be easy for the
12 year olds (students in Grade 5), and one can easily
miss something.

4Problem 9
Consider two spanning trees T1 and T2 on the same
graph G = (V, E). This means that both T1 and T2
contain all vertices of G, and they are both connected
acyclic graphs (their edges are sufficient to create a
path from any vertex to any other in exactly one way).
Initially, the edges of T1 and T2 may be exactly the
same (in this case we are done). Their edges may par-
tially overlap. Or they may be completely disjoint (see
the red/continuous and the blue/dashed spanning trees
in the graph shown in Figure 6.

Figure 6. Two spanning trees.

Assume that there is an edge e = (vi, v j) in T1 not in-
cluded in T2 (and there should also be an edge in T2
not included in T1, since both of them have the same
number of edges: |V | − 1; one less than the number of
vertices).
If we drop the edge e from T1, then the vertices of T1
falls apart into two disjoint pieces (one of them may
consist of one vertex). Namely, V = V ′∪V ′′, where V ′

and V ′′ are disjoint; and in T1 there are no remaining
edges (except e = (vi, v j)) connecting the sets V ′ and
V ′′.
Consider the edges from T2. There should be at least
one edge going from one disconnected piece V ′ to an-
other piece V ′′. Take any edge from T2 and add it to
the edges of T1 (to replace the recently removed edge
e). After this step the overlap of edges in T1 and T2
increases by 1. If we repeat such steps in a similar
manner, eventually T1 and T2 will coincide.

Problem 10
Proof by contradiction. We formulate the negation of

what we have to prove.

• Assume that there is some minimum spanning
tree (MST) T built on the edges of graph G

• Assume that the graph G has edge weights that
are pairwise different

• Assume thereis a simple circuit (i.e. circuit that
does not use any edge twice) in G; and that cir-
cuit contains an edge e = (vi, v j) that has the
maximum weight in this circuit.

• Assume that the MST T contains this edge e.

We will show that T cannot, in fact be the minimum
spanning tree; it is possible to find another spanning
tree having even smaller total weight. Indeed, we can
cut the edge e = (vi, v j). Since T is a tree, it falls apart
into two pieces T1 and T2 such that vi is in T1, v j is in
T2; both trees T1 and T2 are not connected.
Inspect the vertices that belong to the circuit C con-
sisting from the edges of the graph G. Color vertices
belonging to T1 white, and vertices belonging to T2
black. We just saw that (vi, v j) is an edge that goes
from a white vertex to a black one. But there should
be another edge e′ = (vm, vn) going back from black to
white, since C is a circuit that eventually loops back to
the original vertex vi.
We can now connect pieces T1 and T2 using that new
edge e′ (if there are many such edges, pick any one).
We have created a new spanning tree T ′ that is ob-
tained by removing edge e = (vi, v j) and adding back
another edge e′ = (vm, vn). We claim that the weight
w(e′) < w(e) (all edge weights are different; and w(e)
is the largest weight in that circuit). Therefore the new
spanning tree T ′ has smaller total weight than T . And
T cannot be the minimum spanning tree. It is a contra-
diction.

	Answers

