
Lab03/Lab04: String Matching
In these two labs you will create two Scala
classes lv.rbs.ds.lab03.KMPmatcher and
lv.rbs.ds.lab03.BMmatcher that implement
Knuth-Morris-Pratt and Boyer-Moore algorithms
respectively and output the JSON data structures that
can be used to demonstrate step-by-step behavior of
this algorithm.
Both algorithms are widely known and practically im-
portant, and there are many implementations available
in the Internet (including in Scala), but in this lab as-
signment we add one more twist – our goal is to show
the “debug-like” behavior of both string matchers. See
these animations:
http://whocouldthat.be/visualizing-string-matching/
https://people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html
https://people.ok.ubc.ca/ylucet/DS/BoyerMoore.html
https://dwnusbaum.github.io/boyer-moore-demo/
Our goal is NOT a fully-functional Web application
that would perform these tasks, but only a simple back-
end to support such Web applications. Implement the
following two classes with the following public API:

KMP Matcher (Lab03)

class KMPmatcher:
new KMPmatcher(pattern: String)
def getPrefixFun(): List[Int]
def findAllIn(text: CharSequence):

Iterator[Int]
def toJson(text: CharSequence): String

• KMPmatcher(pattern:String) is a construc-
tor to initialize a class instance. Since there are
some initialization costs related to the prepro-
cessing of the searchable pattern, it might be
beneficial to reuse the same matcher with the
same pattern to search multiple texts. We there-
fore avoid passing the target text right away.
• getPrefixFun() returns the prefix function
π(j) (for j = 0, . . . ,m), where m is the length
of the searchable pattern. Prefix function is the
key data structure used by the KMP algorithm.
It is returned as a list of integers. So the length
of this list is m + 1.
• findAllIn(text: CharSequence) returns

an iterator of all offsets in the text where the
searchable pattern is found. Please note that
in the LAB03 you have to return all offsets; it
is not sufficient to find just the first instance and
then give up.
• toJson(text: CharSequence) in this case

we return a JSON data structure as in the pro-
vided samples – they include also the failed at-
tempts to match. This will be used in animation.

Boyer-Moore Matcher (Lab04)

class BMmatcher:
new BMmatcher(pattern: String)
def getGoodSuffixFun(): List[Int]
def getBadCharFun(): List[(Char,Int)]
def findAllIn(text: CharSequence):

Iterator[Int]
def toJson(text: CharSequence): String

The only difference with KMP is that JSON has differ-
ent structure; and BM algorithm has every step scan-
ning backwards: start ≥ end. Two data structures
(Good Suffix function and Bad Character function) are
relevant only to the BM algorithm.

JSON sample for KMP (Lab03)

{
"algorithm": "KMP",
"pattern": "ABCDABD",
"text": "ABC ABCDAB ABCDABCDABDE",
"prefixFun": [[0,-1],[1,0],[2,0],[3,0],
[4,0],[5,1],[6,2],[7,0]],

"steps": [
{ "offset": 0, "start": 0, "end": 3 },
{ "offset": 3, "start": 0, "end": 0 },
{ "offset": 4, "start": 0, "end": 6 },
{ "offset": 8, "start": 2, "end": 2 },
{ "offset": 10, "start": 0, "end": 0 },
{ "offset": 11, "start": 0, "end": 6 },
{ "offset": 15, "start": 2, "end": 6,
"match": "true" },
{ "offset": 22, "start": 0, "end": 0 }

]
"comparisons": 27

}

JSON sample for BM (Lab04)

{
"algorithm": "BM",
"pattern": "ABCDABD",
"text": "ABC ABCDAB ABCDABCDABDE",
"goodSuffixFun": [[0,7],[1,7],[2,7],

[3,7],[4,7],[5,7],[6,3],[7,1]],
"badCharFun": [["A",4],["B",5],["C",2],["D",6]],
"steps": [
{ "offset": 0, "start": 6, "end": 6 },
{ "offset": 4, "start": 6, "end": 6 },
{ "offset": 11, "start": 6, "end": 6 },
{ "offset": 15, "start": 6, "end": 0,

"match": "true" }
],
"comparisons": 10

}

http://whocouldthat.be/visualizing-string-matching/
https://people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html
https://people.ok.ubc.ca/ylucet/DS/BoyerMoore.html
https://dwnusbaum.github.io/boyer-moore-demo/

	KMP Matcher (Lab03)
	Boyer-Moore Matcher (Lab04)
	JSON sample for KMP (Lab03)
	JSON sample for BM (Lab04)

