
LAB02 Preparation (P16-P20)
All problems (P16-P20) use integer arithmetic (set Z).
They should be enclosed in a Z-scope. And some im-
ports and definitions are also assumed:

Require Import ZArith.
Require Import Znumtheory.
Require Import BinInt.
Require Import Znumtheory.

Open Scope Z_scope.

Lemma sample2_16 ...
Lemma sample2_17 ...
Lemma sample2_18 ...
Lemma sample2_19 ...
Lemma sample2_20 ...

Close Scope Z_scope

Reusing Existing Work

In many cases you have an option – prove simple lem-
mas on your own, or find them to reuse.
Here is a useful lemma: number 1 divides any other
integer number a ∈ Z.

Lemma sample2_16_helper:
forall a: Z, (1 | a).

Proof.
intros a.
unfold Z.divide.
exists a.
ring.

Qed.

If you want to find lemmas containing subexpresison
(1 | . . .), you can run search:

Locate "|".

This should return this answer:

"( x | y )" := Z.divide x y : Z_scope
(default interpretation)

This immediately suggests that you search for
Z.divide:

Search Z.divide.

It will print out all the lemmas containing divisibility
relation on integers (the set Z). Beware of similar lem-
mas in other number sets (e.g. "nat" - nonnegative in-
tegers). It is a different set, and these theorems are not
applicable for your problems.

Z.divide_1_l: forall n : Z, (1 | n)

This lemma shows that each integer number is divisible
by 1. In our case it was easy to prove it independently,

but usually searching for an existing result saves your
time.

Look Around Before you Prove

(A) These will print out specific lemmas or definitions:

Print rel_prime.
Print Z.add_simpl_l.
Print Z.mul_add_distr_r.
Print Z.pow_pos.

(B) Search all lemmas containing some concept:

Search Zis_gcd.
Search Z.divide.
Search Z.divide.

(C) Search algebraic patterns with wildcards. The first
two patterns might display some lemmas how to open
parentheses using distributivity.

SearchRewrite (_ * (_ + _)).
SearchRewrite ((_ + _) * _).
SearchRewrite (_ * (_ * _)).
SearchRewrite (_ + _ - _).
SearchRewrite (_ - _).
SearchRewrite (_ + _).
SearchRewrite (_ * _).
SearchRewrite (1 * _).

If you run SearchRewrite for a single "minus":

Zminus_0_l_reverse:
forall n : Z, n = n - 0

Zminus_diag_reverse:
forall n : Z, 0 = n - n

Zplus_minus_eq:
forall n m p : Z, n = m + p -> p = n - m

Zminus_plus_simpl_l:
forall n m p : Z, p + n - (p + m) = n - m

Zminus_plus_simpl_l_reverse:
forall n m p : Z, n - m = p + n - (p + m)

Zminus_plus_simpl_r:
forall n m p : Z, n + p - (m + p) = n - m

Zeq_minus: forall n m : Z,
n = m -> n - m = 0

Lemma rel_prime_bezout :
forall a b:Z, rel_prime a b -> Bezout a b 1.

(D) Locate some notations:

Locate "|".
Locate "^".

Problem 16. If gcd(a, b) = 1 and c divides a, then
gcd(b, c) = 1.



2

Hints: Use the definition of GCD (greatest common
divisor) in your hypothesis: We know that every k that
is a divisor of both a and b is equal to 1. Now assume
that there is some number (possibly a different k′) that
divides both b and c. You must show that it also must
be equal to 1.
You may need to prove or find the following lemma:
∀a, b, c ∈ Z, (a | b) → (b | c) → (a | c). Namely,
the divisibility relation is transitive: If a divides b and
b divides c, then a divides c.
If you see Zis_gcd as one of the hypotheses, you can
destruct the hypothesis:
destruct H as [_ _ H1].

Here the underscores are placeholders (they tell that
you will not use these hypotheses, so you are not giv-
ing them any names).
If you see Zis_gcd in your goal, then type this tactic:
apply Zis_gcd_intro.

It will create a different goal - one that actually de-
scribes the meaning of the greatest common divisor.

Problem 17. If gcd(a, b) = 1, then gcd(ac, b) =
gcd(c, b).
Hints: This theorem is easiest to solve using Bezout’s
indentity. You may need a warm-up – several lemmas:

(A) ∀n ∈ Z, 1 · n = n.

(B) ∀a, b, c ∈ Z, (a | b)→ (a | c · b).

(C) ∀a, b, c, k ∈ Z, gcd(a, b) = 1→ (k | a · c)→ (k |
b)→ (k | c).

The first two lemmas are very easy. The last lemma
may need to use Bezout’s identity: Once a and b are
mutual primes, there should be integers x, y such that
ax + by = 1. This can be used to prove that k must
divide c (if we already know that k divides a · c and b.
In order to prove the last lemma (and also the Problem
17 itself) you may need to use several lemmas (that
already exist in Coq). Please take a look at these:

rel_prime_bezout
mul_1_left
Z.mul_add_distr
Z.mul_assoc
div_multiple_left

Problem 18. If gcd(a, b) = 1 and c divides (a+b), then
gcd(a, c) = gcd(b, c) = 1.
Hints. This theorem may need a few easy lemmas:

(A) If a = b and c = d then a − c = b − d.
(B) If gcd(a, b) = 1 and c divides a + b, then

gcd(a, c) = 1.

A few more predefined lemmas may be useful. For
example,

Z.divide_1_l
Z.add_comm
Zis_gcd_sym

Problem 19. If gcd(a, b) = 1; d divides ac; d divides
bc, then d divides c.
Hints. You may need to state the Bezout’s identity,
then "destruct" it – find those specific x, y which sat-
isfy ax + by = 1. Then you can find out about divisors
of c as well.

Problem 20. If gcd(a, b) = 1, then gcd(a2, b2) = 1.
Hints. Bezout’s identity may work. But you may
also want to prove a chain of equalities: gcd(a, b) =
gcd(a, b2) = gcd(a2, b2). In order to prove this, you
need to use the fact that a,b are mutually prime.

Problem 15. In this task you need to define a func-
tion (using recursive "fixpoint") to compute the result
of some procedure where we remove numbers from a
list. See https://bit.ly/2VhNikC for details.

https://bit.ly/2VhNikC

