LABO2 Preparation (P16—P20) but usually searching for an existing result saves your
All problems (P16-P20) use integer arithmetic (set Z). time.
They should be enclosed in a Z-scope. And some im-

ports and definitions are also assumed: Look Around Before you Prove
Require Import ZArith. (A) These will print out specific lemmas or definitions:
Require Import Znumtheory. ) )
Require Import BinInt. Pr%nt rel_prlr.ne.
Require Import Znumtheory. Print Z.add_simpl_l.
Print Z.mul_add_distr_r.
Open Scope Z_scope. Print Z.pow_pos.
Lemma sample2_16 ... (B) Search all lemmas containing some concept:

Lemma sample2_17 ...
Lemma sample2_18 ...
Lemma sample2_19 ...
Lemma sample2_20 ...

Search Zis_gcd.
Search Z.divide.
Search Z.divide.

(C) Search algebraic patterns with wildcards. The first
two patterns might display some lemmas how to open
parentheses using distributivity.

Close Scope Z_scope

Reusing Existing Work
. . SearchRewrite (_ * (_ + _)).
In many cases you have an option — prove simple lem- SearchRewrite ((_ + ) * _).
mas op your own, or find them to reus.e.. SearchRewrite (_ * (_ * )).
Here is a useful lemma: number 1 divides any other ¢ . hRewrite C+_ -,
integer number a € Z. SearchRewrite (_ - _).
Lemma sample2_16_helper: SearchRewrite (_ + _).
forall a: z, (1 | a). SearchRewrite (_ * ).
Proof. SearchRewrite (1 * _).
intros a. L. If you run SearchRewrite for a single "minus":
unfold Z.divide.
exists a. Zminus_0_1_reverse:
ring. foralln : Z, n=n - 0
Qed. Zminus_diag_reverse:
foralln : Z, O =n - n

If you want to find lemmas containing subexpresison

Zplus_minus_eq:
(1] ...), you can run search: P N

forallnmp : Z, n=m+p->p=n-m
Locate "|". Zminus_plus_simpl_1:
forallnmp : Z, p+n- (p+m) =n-m

This should return this answer: Zminus_plus_simpl_1_reverse:

"(Cx | y)" :=Z.divide x y : Z_scope forallnmp : Z, n-m=p+n- (p +m
(default interpretation) Zminus_plus_simpl_r:
forallnmp : Z, n+p- (m+p)=n-m

This immediately suggests that you search for

Zeq_minus: forall nm : Z,
Z.divide:

n=m->n-m=20
Search Z.divide. Lemma rel_prime_bezout :

forall a b:Z, rel_prime a b -> Bezout a b 1.
It will print out all the lemmas containing divisibility

relation on integers (the set Z). Beware of similar lem-
mas in other number sets (e.g. "nat" - nonnegative in-
tegers). It is a different set, and these theorems are not Locate
applicable for your problems. Locate "A".

(D) Locate some notations:

||||v

Z.divide_1_1: forall n : Z, (1 | n)

This lemma shows that each integer number is divisible Problem 16. If gcd(a,b) = 1 and c divides a, then
by 1. In our case it was easy to prove it independently, ged(b,c) = 1.
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Hints: Use the definition of GCD (greatest common
divisor) in your hypothesis: We know that every k that
is a divisor of both @ and b is equal to 1. Now assume
that there is some number (possibly a different £’) that
divides both b and c¢. You must show that it also must
be equal to 1.

You may need to prove or find the following lemma:
Ya,b,c € Z, (a | b) » (b | ¢) = (a | c¢). Namely,
the divisibility relation is transitive: If a divides b and
b divides c, then a divides c.

If you see Zis_gcd as one of the hypotheses, you can
destruct the hypothesis:

destruct H as [_ _ H1].

Here the underscores are placeholders (they tell that
you will not use these hypotheses, so you are not giv-
ing them any names).

If you see Zis_gcd in your goal, then type this tactic:
apply Zis_gcd_intro.

It will create a different goal - one that actually de-
scribes the meaning of the greatest common divisor.

Problem 17.
gcd(c, b).

Hints: This theorem is easiest to solve using Bezout’s
indentity. You may need a warm-up — several lemmas:

If ged(a,b) = 1, then ged(ac,b) =

(A) VneZ, 1-n=n.
B) VYa,b,ceZ, (a| b) > (a| c-b).

(©) Va,b,c,keZ, gcdla,b)=1—> (k| a-c) - (k|
b) = (k| o).

The first two lemmas are very easy. The last lemma
may need to use Bezout’s identity: Once a and b are
mutual primes, there should be integers x,y such that
ax + by = 1. This can be used to prove that k must
divide c (if we already know that k divides « - ¢ and b.
In order to prove the last lemma (and also the Problem
17 itself) you may need to use several lemmas (that
already exist in Coq). Please take a look at these:

rel_prime_bezout
mul_1_left
Z.mul_add_distr
Z.mul_assoc
div_multiple_left

Problem 18. If gcd(a, b) = 1 and ¢ divides (a+b), then
ged(a, ¢) = ged(b,c) = 1.
Hints. This theorem may need a few easy lemmas:

(A) fa=bandc=dthena—c=b-d.
(B) If ged(a,b) = 1 and ¢ divides a + b, then
ged(a, c) = 1.

A few more predefined lemmas may be useful. For
example,

Z.divide_1_1
Z.add_comm
Zis_gcd_sym

Problem 19. If gcd(a, b) = 1; d divides ac; d divides
bc, then d divides c.

Hints. You may need to state the Bezout’s identity,
then "destruct” it — find those specific x,y which sat-
isfy ax + by = 1. Then you can find out about divisors
of ¢ as well.

Problem 20. If gcd(a, b) = 1, then ged(a?, b?) = 1.
Hints. Bezout’s identity may work. But you may
also want to prove a chain of equalities: gcd(a,b) =
ged(a, b?) = ged(a?, b?). In order to prove this, you
need to use the fact that a,b are mutually prime.

Problem 15. In this task you need to define a func-
tion (using recursive "fixpoint") to compute the result
of some procedure where we remove numbers from a
list. See https://bit.ly/2VhNiKC for details.


https://bit.ly/2VhNikC

