
1

Final Topics and Sample Problems

The final exam will contain two questions from each
part – 10 questions altogether. In this list of topics
every part is subdivided into several subtopics (and
sample questions are mentioned for every subtopic).
Therefore, the sample problems cover somewhat larger
range of topics than the actual final exam would.

Part 1: Sets, Functions, Predicates and Quantifiers

1.1. Find the cardinality of sets. Question: How
many items are there?
Count the number of elements or state that the set is (countably) infinite. We

can define the sets using set operations (union, intersection, difference, sym-

metric difference), the images and inverse images of functions, set builder

notation {x | where x satisfies P(x)}, powersets and Cartesian products.

Note: We only deal with countable infinities. No need for the “higher order

infinities”, Cantors diagonalization or anything like this.

Sample Problem 1.1.
Let A and B be sets with sizes |A| = 10 and |B| = 7.
Calculate the largest and the smallest possible values
for each of the following expressions:
(A) |A ∩ B| + |A ∪ B|,
(B) |A × A × B|,
(C) |P(A ∩ B)|,
(D) |A ⊕ B|.
1.2. Check the subset relation between sets. Ques-
tion: Does one condition imply another?
Given the definitions of two or more sets, establish, if sets are equal, or one

of them is a (proper) subset of another. Use Euler-Venn diagrams showing set

relations. Determine, if there is a logical implication in one direction (or in the

opposite direction, or in both directions as in “if and only if” statements).

Sample Problem 1.2.
(A) Let a and b be positive integers and let{

A = {x ∈ Z | a | x},
B = {x ∈ Z | b | x}. (1)

Find the necessary and sufficient condition for A ⊆ B.
(B) In the above definitions of the sets A, B insert num-
bers a = 25, b = 40. Write a simple definition for the
set C = A ∩ B.

Note. In the formula (1) the first vertical bar is the part
of set builder notation, the other vertical bar denotes
the divisibility relation.
1.3. Translate into predicates or quantifiers.
Question: Can we formalize our thinking?
Given an English statement (or other informal statement using tables, charts or

function graphs) formalize this into expressions involving set notation, predi-

cates and quantifiers.

Sample Problem 1.3.
Consider the following statement:

Let a1, a2, a3, . . . be a strictly increasing sequence
of positive integers such that for any fixed positive
integer C, the sequence

a1 +C, a2 +C, a3 +C, . . .

contains no more than a finite number of primes.

(A) Rewrite the properties of the sequence (an) predi-
cates and quantifiers. You can use predicate isPrime(n)
that is true iff n is a prime. In your formula, (an)
is a free variable (somebody gave it to you), but all
the other variables, if you need them, should be bound
variables – the value of the formula should not depend
on them.
(B) Create a sequence (an) that satisfies both condi-
tions.
1.4. Check properties of functions. Question: Are
there known patterns in functions?
Given a definition of sets and functions, verify, if they are injective, surjec-

tive, bijective. Also check, if functions are monotone (strictly or non-strictly

increasing or decreasing) or constant. Build inverse functions and function

compositions.

Sample Problem 1.4.
Let f : A → B be a function. We say that f is two-to-
one, if for each b ∈ B there are exactly two elements
a1, a2 ∈ A such that f (a1) = f (a2) = b.
It is known that |A| = 2n and |B| = n for some positive
integer n. How many functions f : A → B are two-to-
one?
1.5. Partitions of a set. Question: When two differ-
ent representations express the same object?
Given a set and some additional conditions, show how to define an equivalence

relation that causes a partition of the set into equivalence classes.

Sample Problem 1.5.
Let A be a set with 100 elements. We split A into
equivalence classes (disjoint subsets A1, . . . , An such
that their union is A).
(A) How many partitions of the set A into n = 5 parts
of size 20?
(B) How many partitions of the set A into n = 20 parts
of size 5?

2

Part 2: Recursion, Sequences and Algorithms

2.1. Use iterative notation. Question: How do we
manipulate long expressions and the for loops?
Given formulas with

∑n
i=1 . . . (long summation),

∏n
i=1 . . . (long products), and

big conjunctions, disjunctions, set unions, differences and symmetric differ-

ences, find out their meaning or compute the values. Also identify the iterative

notation if you are given computer code that performs something or an expres-

sion with dots. Build interative definitions for sequences described in words –

number of ways to make change, counting strings with certain properties and

so on.

Sample Problem 2.1.
(A) Evaluate the following product:

100∏
k=0

k2

k + 1
.

(B) Evalue the following sum:

100∑
k=1

1
k(k + 1)

.

2.2. Use closed-form expressions for sequences.
Question: Can we describe a long procedure by a
short formula?
Given a description of a sequence (recurrent definition or some other), create

the “closed” formula to compute its element. You can use characteristic equa-

tions, summation of arithmetic and geometric progressions, simple inductive

reasoning to find them.

Sample Problem 2.2.
Assume that the characteristic equation for a homoge-
neous linear recurrence relation with constant coeffi-
cients is (r − 5)3 = 0.
(A) Write a recurrent definition of a sequence having
this characteristic equation.
(B) Describe the form for the general solution to the
recurrence relation.
2.3. Use mathematical induction. Question: How
do we prove anything about an infinite set?
Given a statement, describe the inductive basis and the “inductive transition”.

We can also have examples with Fibonacci-type sequences (where the induc-

tive basis needs two statements instead of one), or “strong induction”, where

you may need the statement for all the previous values to make the next step.

Sample Problem 2.3.
Given a positive integer n, consider the following sum
with alternating signs:

S (n) =
n−1∑
k=0

(−1)k · (n − k)2.

For example,
S (1) = 12,
S (2) = 22 − 12,
S (3) = 32 − 22 + 12,
. . .
S (n) = n2 − (n − 1)2 + (n − 2)2 − . . . + (−1)n−1 · 12.

(A) Find a closed expression for S (n) (formula to cal-
culate it without long summation).
(B) Formulate the basis and the inductive transition of
the mathematical induction proof.
2.4. Write the Big-O-Notation. Question: How do
we compare function growth and the speed of algo-
rithms?
Given a description of an algorithm, a sequence or a real-valued function,

define, which Big-O class this function belongs to; estimate the speed of its

growth.

Sample Problem 2.4.
Assume that you have a set A with size k; this set con-
tains words; all words have length m. An exhaustive
search algorithm looks at all (ordered) pairs of ele-
ments p1, p2 ∈ A; it runs Knuth-Morris-Pratt algorithm
(using p1 as a pattern and p2 as a text).
Write the time complexity of this exhaustive search al-
gorithm (in terms of k and m). Use Big-O-notation.
2.5. Manipulate strings and finite lists. Question:
How to operate with a finite list of symbols.
Given a description of a string algorithm or another procedure, check its math-

ematical properties or build a counter-example. Same thing about finite lists of

some other kind, for example, lists of integers. Use the concepts prefixes, suf-

fixes, reverse strings, palindromes (strings that are the same from both ends),

strings with balanced parentheses etc.

Sample Problem 2.5.
In how many ways can we make a list of three integers
(a, b, c) where 0 ≤ a, b, c ≤ 9 and a + b + c is even?

3

Part 3: Number Theory

3.1. Use divisibility, primes and factorization.
Question: How do the numeric properties depend on
prime factorization?
Prove or disprove simple statements. List all divisors for a given number. Use

reasoning that there are infinitely many primes.

Sample Problem 3.1.
Let A be the set of all positive divisors of the number
144 (including 1 and 144 itself).
(A) What is the multiplication of all numbers in the set
A?
(B) Express this number as the product of prime pow-
ers.
3.2. Make computations in modular arithmetic.
Question: How to go from infinite sets to finite sets
of congruence classes?
Given some statements involving remainders modulo m apply it for four arith-

metic operations, polynomial values. Apply simple divisibility rules in form

of congruence equations.

Sample Problem 3.2.

• ASCII value of h: c[h] = 104,

• ASCII value of e: c[e] = 101,

• ASCII value of y: c[y] = 121.

Compute the Rabin-Karp hash values:
H(hey) = (c[h] ·2572+c[e] ·257+c[y] ·2570) mod 29,
H(eyh) = (c[e] ·2572+c[y] ·257+c[h] ·2570) mod 29,
H(yhe) = (c[y] ·2572+c[h] ·257+c[e] ·2570) mod 29.
3.3. Use GCD, LCM and Bezout identity. Ques-
tion: What do we get by adding several arithmetic pro-
gressions?
Run Euclids algorithm to find GCD. Find LCM from GCD. Run Blankinships

algorithm or to find the solution for the Bezouts equation: ax + by = d, where

d = gcd(a, b). Find inverse values modulo m. Apply this to individual linear

congruences or simple systems (as in Chinese Remainder Theorem).

Sample Problem 3.4.
Somebody wants to find two subsequent numbers such
that none of them can be expressed as a power nk

(where k > 1). To be sure that none of them is a power,
s/he creates the following system:{

x ≡ 2 (mod 22)
x + 1 ≡ 3 (mod 32)

(A) Find a solution for this system.
(B) Find a solution for a larger system (it would give a
sequence of three subsequent numbers):

x ≡ 2 (mod 22)
x + 1 ≡ 3 (mod 32)
x + 2 ≡ 5 (mod 52)

3.4. Number notation in other bases. Question:
How to express numbers as polynomials with different
bases?
Convert numbers from one base into another. Use infinite geometric progres-

sion summation and other ways to manipulate the numbers (including frac-

tions) in binary and other simple bases. Use the relationship between the log-

arithm of the number and the length of its notation.

Sample Problem 3.4.
Create an example of a rational number having an infi-
nite binary representation:

β = 0.b1b2b3b4b5b6b7 . . . ,

where the bits have period T = 10, i.e. b1 = b11,
b2 = b12, etc. (Your number β should not have any
periods shorter than 10.)
3.5. Repetitive Processes in Number Theory.
Question: What happens, if the same operation is
done again and again?
Describe a fast variant of modular exponentiation. Estimate when there should

be an infinite loop. Use the Fermats and Eulers theorems. How this affects

“primitive roots”, the number of digits in periodic decimal fractions and so

on.

Sample Problem 3.5.
Consider a sequence{

a1 = 1
an+1 = (2an + 3) mod 17

(A) Write the members of this sequence until they start
to repeat.
(B) What is the period of this sequence?
(C) Can we pick a different initial value a1 so that the
sequence will have a “pre-periodic phase” (i.e. before
the period repeat starts, there are some values that lead
to the period).

4

Part 4: Counting and Probabilities

4.1. Compute combinations and probabilities.
Question: How to count items taking into account
their symmetries?
Given a description of a set or a tree-like decision process, count the variants

using multiplication rule and its variants. Also addition, subtraction or division

rules – to ensure that everything is counted exactly once. Count set union sizes

using inclusion-exclusion principle.

Sample Problem 4.1.
(A) There are 5 alphabetically sorted vowels
{A, E, I,O,U}. How many 3-letter words one can
create that can contain equal letters, but all letters
are in increasing alphabetical order. (For example,
“words” AAA, AUU and IOU are legal, but EAI is
not.)
(B) Write all such words that start with letter I –
arrange them in alphabetical order.
4.2. Use Pigeonhole principle. Question: How
should pigeons collide for the given counts of pigeons
and holes?
Verify, if there can be bijective (or injective) mapping between some two sets.

Combine with other combinatorial methods to find out, how uniqueness of

identifiers can be ensured.

Sample Problem 4.2.
(A) Find the smallest number N, such that among any
N positive integers there are at least 5 numbers ending
with the same digit.
(B) Given a set of seven distinct positive integers,
prove that there is a pair whose sum or whose differ-
ence is a multiple of 10.
4.3. Use factorials and binomial coefficients.
Question: How to combine multiple choices from the
same set?
Compute combinations with or without repetitions. Use binomial formula with

its coefficients.

Sample Problem 4.3.
(A) What is the coefficient of x3 in (1 + x)6?
(B) What is the coefficient of x3 in (2x − 3)6?
(C) What is the coefficient of x3 in (x+1)20+ (x−1)20?
(D) What is the coefficient of x3y3 in (x + y)6?
(E) What is the coefficient of x3y3 in (x + y)7?
4.4. Use independent events and Bayes formula.
Question: What does a new event add to our knowl-
edge about the probabilities of other events?
What events are considered independent? What is a conditional probability.

Switch the order in the conditional probability, using Bayes formula.

Sample Problem 4.4.
About 40% of all librarians and also about 10%
of all “Rimi” shop assistants like to read books by
R.Blaumanis. For every librarian there are 20 “Rimi”
shop assistants.
Assume that you know that some person x is either a
librarian or a “Rimi” shop assistant; and you also know

that s/he likes to read books by R.Blaumanis. Find the
probability that x is a librarian.
4.5. Use random variables, expected value, vari-
ance. Question: How to summarize complex prob-
ability distributions with just 2 numbers?
Identify random variables from “word problems”, descriptions of real-world

situations. For the given random variable X compute E(X) and V(X). Use

Markov’s and Chebyshev’s inequalities.

Sample Problem 4.5.
Let Q5 be the 5-dimensional hypercube with 32 ver-
tices. Let X be a random variable that is obtained as
follows:
Select two different random vertices v1, v2 in Q5. Set
X = 1, if v1, v2 are connected with an edge.
(A) Find E(X).
(B) Find V(X).

5

Part 5: Graphs and Trees

5.1. Verify and use relation properties. Question:
How relations relate to directed graphs?
Check, if a relation is reflexive, symmetric, transitive, antisymmetric. Find

relation joins and powers. Show relations as directed graphs or read them

from graphs. Use total and partial order relationships.

Sample Problem 5.1.
For each of the following relations defined on the set
{1, 2, 3, 4, 5} determine whether the relation is reflex-
ive, symmetric, antisymmetric, and/or transitive.
(A) R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
(B) R = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1),

(4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)},
(C) R = {(1, 2), (2, 3), (3, 4), (4, 5)},
(D) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)},
(E) R = {(1, 1), (1, 2), (2, 1), (3, 4), (4, 3)},
(F) R = {1, 2, 3, 4, 5} × {1, 2, 3, 4, 5}.
Enter the truth values in a table:

Question Reflexive Symmetric Antisymmetric Transitive

(A)
(B)
(C)
(D)
(E)
(F)

5.2. Create graphs and count graph elements.
Question: How to translate problems into graph no-
tation?
Create a graph from non-graph problems. Find vertex/edge counts or ver-

ify simple properties for simple undirected and directed graphs. Build some

known types of graphs (Kn – full graph, Cn – cyclic graph, Wn – wheel graph,

Qn – n-dimensional hypercube.) Use adjacency and incidence matrices.

Sample Problem 5.2.
Let G be a simple undirected graph. Prove that G or G
(or both) must be connected.
Note. Graph G is the complement of the graph G; it is
formed by removing all the edges of G and replacing
them by all possible edges that are not in G.
5.3. Check graph properties. Question: How to
verify and use basic graph properties?
Verify connectivity, cyclic or acyclic graphs, Euler and Hamilton paths, graph

planarity and colorings. For graphs defined by their adjacency matrices or im-

plicit definitions check, if the graph is connected/disconnected, cyclic/acyclic,

contains paths of certain kinds, can be isomorphic to a planar graph or a 3D

solid.

Sample Problem 5.3.
Graph G is defined by the following adjacency matrix:

MG =



0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0


.

(A) Is graph G connected?
(B) Is graph G cyclic?
(C) Does G have a Euler path?
Justify your answers.

5.4. Use DFS and BFS tree traversal algorithms.
Question: What are some orderly ways to list vertices
that are broadly applicable?
Given a simple directed or undirected graph find the traversal order. Restore

a tree from its traversal order. Rewrite expressions and their syntax trees in

preorder, inorder, postorder ways.

Sample Problem 5.4.

Figure 1. A perfect binary tree.

In the perfect binary tree (Figure 1) all leaves are at
the level 4. All nodes in this tree are enumerated in
the BFS order (using numbers from 1 to 31). Let
s1, . . . , s31 be the sequence of numbers that is created
when doing in-order DFS traversal of this tree.
(A) Find the sum s1 + s3 + . . . + s31 (add all the odd
numbers in this sequence).
(B) Find the sum s2 + s4 + . . . + s30 (add all the odd
numbers in this sequence).

5.5. Use Prim’s and Dijkstra’s algorithms. Ques-
tion: How to solve practical tasks in weighted graphs
and transport networks?
Given a weighted undirected graph, find the shortest path or the minimum

spanning tree. Check simple statements about the spanning trees and shortest

paths.

Sample Problem 5.5.
For the graph on Figure 2 find the shortest paths from
the vertex A to all the other vertices. For each vertex
B,C,D, E, F write the total length of the shortest path
and also the step in the Dijkstra’s tree-growing algo-
rithm at which you added that vertex.

Figure 2. A weighted graph.

6

Vertex Mininum Path Step number
B
C
D
E
F

	Final Topics and Sample Problems
	Part 1: Sets, Functions, Predicates and Quantifiers
	1.1. Find the cardinality of sets
	1.2. Check the subset relation between sets
	1.3. Translate into predicates or quantifiers
	1.4. Check properties of functions
	1.5. Partitions of a set

	Part 2: Recursion, Sequences and Algorithms
	2.1. Use iterative notation
	2.2. Use closed-form expressions for sequences
	2.3. Use mathematical induction
	2.4. Write the Big-O-Notation
	2.5. Manipulate strings and finite lists

	Part 3: Number Theory
	3.1. Use divisibility, primes and factorization
	3.2. Make computations in modular arithmetic
	3.3. Use GCD, LCM and Bezout identity
	3.4. Number notation in other bases
	3.5. Repetitive Processes in Number Theory

	Part 4: Counting and Probabilities
	4.1. Compute combinations and probabilities
	4.2. Use Pigeonhole principle
	4.3. Use factorials and binomial coefficients
	4.4. Use independent events and Bayes formula
	4.5. Use random variables, expected value, variance

	Part 5: Graphs and Trees
	5.1. Verify and use relation properties
	5.2. Create graphs and count graph elements
	5.3. Check graph properties
	5.4. Use DFS and BFS tree traversal algorithms
	5.5. Use Prim's and Dijkstra's algorithms

