Question 1.

By *U* we denote the set of all positive integers between 1 and 120. This is the *universe* in which we define several subsets:

$$
\begin{cases}\nA = \{x \in U \mid 2 \mid x\}, \\
B = \{x \in U \mid 3 \mid x\}, \\
C = \{x \in U \mid 5 \mid x\}, \\
X = \{x \in U \mid 2 \mid x \lor 3 \mid x\}, \\
Y = \{x \in U \mid (3 \mid x \land 5 \mid x) \lor \neg(2 \mid x)\}.\n\end{cases}
$$

(A) Express *X* using the sets *A*, *B*,*C* (using set union *V* ∪ *W*, set intersection *V* ∩ *W*, set complement \overline{V} operations).

(B) Express *Y* using the sets *A*, *B*,*C* in a similar way. (C) Find |*X*| - the size of the set *X*.

(D) Find |*Y*| - the size of the set *Y*.

Question 2.

Let *A* and *B* be sets with sizes $|A| = 8$ and $|B| = 5$ and $|A \cap B| = 3.$

Calculate the largest and the smallest possible values for each of the following set sizes:

 $(A) |A \cup B|$.

(**B**) $|A \times (B \times B)|$.

(C) $|\mathcal{P}(\mathcal{P}(A \cap B))|$ - the powerset of a powerset of *A*∩*B*. (D) $|A \oplus B|$ - the symmetric difference of the sets *A* and *B*.

Question 3.

Consider the following recurrent sequence:

$$
\begin{cases}\na_0 = 3 \\
a_1 = 4 \\
a_{n+2} = 5a_{n+1} - 6a_n, \text{ if } n \ge 0\n\end{cases}
$$

Assume that b_n is another sequence satisfying the recurrence rule

$$
b_{n+2} = 5b_{n+1} - 6b_n, \text{ if } n \ge 0
$$

(The first two members b_0 , b_1 are not known.)

(A) Write the first 6 members of this sequence (a_0, \ldots, a_5) .

(B) Write the characteristic equation for this sequence. (C) Write the general expression for an arbirary sequence b_n satisfying the recurrent expression as a sum of two geometric progressions (you can leave unknown coefficients in your answer; just explain which ones they are).

(D) Write the formula to compute *aⁿ* (that would satisfy the initial conditions $a_0 = 3$ and $a_1 = 4$).

Question 4.

Consider this code snippet in Python:

```
n = 1000sum = 0for i in range(1, n^{*}n+1):
    for j in range(1,i+1):
        sum += i % j
```
And a similar one in R:

n <- 1000 sum <- 0 for (i in 1:(n*n)) { for (j in 1:i) { sum <- sum + i %% j } }

(A) Explain in human language what this algorithm does.

(B) Denote by $f(n)$ the number of times the variable 'sum' is incremented. Write the Big-O-Notation for *f*(*n*). Find a function *g*(*n*) such that *f*(*n*) is in *O*(*g*(*n*)). (If there are multiple functions, pick the one with the slowest growth.)

(C) Express the function $f(n)$ precisely - how many times 'sum' is incremented in terms of variable *n*.

Question 5.

Let *A* be the set of all positive divisors of the number 120 (including 1 and 120 itself).

(A) What is the multiplication of all numbers in the set *A*?

(B) Express this number as the product of prime powers.

Question 6.

Define the following binary relationship on the set of integer numbers \mathbb{Z} : We say that *aRb* (numbers $a, b \in \mathbb{Z}$ are in the relation *R*) iff

$$
\begin{cases}\n a - b \equiv 0 \pmod{11} \\
 a - b \equiv 0 \pmod{12} \\
 a - b \equiv 0 \pmod{13}\n\end{cases}
$$

For all items where you answered 'FALSE', specify a counterexample (values for some numbers that would make the condition true, but the conclusion false). If the statement was true, write "none".

(A) counterexample: . . .

- (B) counterexample: . . .
- (C) counterexample: . . .
- (D) counterexample: . . .

Question 7.

Four people *A*, *B*,*C*, *D* each has his own hat. After the meeting they leave their building in a hurry, everyone grabs some hat at random so that all 4! permutations of the hats have equal probabilities.

Let the random variable *X* denote the number of hats that were picked up correctly. (For example, if the hat assignment is this: $(A \rightarrow A, B \rightarrow B, C \rightarrow D, D \rightarrow C)$, then $X = 2$, because two people got their own hats.)

(A) Find *E*(*X*) - the expected value of *X*.

(B) Find *V*(*X*) - the variance of *X*.

Question 8.

There was a crooked man who had a crooked 1 euro coin. On lucky days it would flip the *heads* with probability $p = \frac{2}{3}$, and the *tails* with probability $p = \frac{1}{3}$, but on unlucky days it was the opposite $(p(\text{heads}) = \frac{1}{3}, \text{ but } p(\text{tails}) = \frac{2}{3})$. There were equal probabilities of $\frac{1}{2}$ for lucky and unlucky days.

One morning he flipped the coin 5 times and altogether got three *heads* and two *tails*.

Let us introduce the following events:

- *E* (evidence): Five coin tosses result in three *heads* and two *tails*.
- *H* (hypothesis): The current day is lucky.

(A) Find $P(E|H)$ - the conditional probability of *E* given that the day is lucky.

(B) Find $P(E|H) \cdot P(H)$ - the probability that the day is lucky and *E* happens.

(C) Find $P(E|\overline{H})$ - the conditional probability of *E* given that the day is not lucky.

(D) Find $P(E|\overline{H}) \cdot P(\overline{H})$ - the probability that the day is unlucky and *E* happens.

(E) Find *P*(*E*) - as the sum of two probabilities (*E* happened on a lucky day and also *E* happened on unlucky day).

(F) Find the conditional probability $P(H|E)$ - the likelyhood that the croocked man has a lucky day, given that the event *E* has happened.

Question 9.

Figure 1. A tree for an expression.

The syntax tree describes an algebraic expression (please note the difference between the unary minus that flips the value of the variable *y* and the binary minus that subtracts the two subexpressions: −*y* and 6×3).

(A) Write the preorder DFS traversal of this tree.

(B) Write the inorder DFS traversal of this tree.

(C) Write the postorder DFS traversal of this tree. *Note.* In all 3 answers denote the unary minus with the tilde sign ∼, but the regular/binary minus with −.

Question 10.

Figure 2. A graph with 9 vertices.

Step	Newly Added Edge
Step 1	
Step 2	
Step 3	
Step 4	
Step 5	
Step 6	
Step 7	
Step 8	

What is the total weight of the obtained Minimum Spanning Tree?

Answers

Every problem is worth 15 points. The total for this final is 150 points.

Question 1.

(A) $X = A \cup B$ (Boolean OR means set union)

(B) $Y = (B \cap C) \cup \overline{A}$ (Boolean and means set intersection; negation means set complement)

(C) |*X*| = |*A*|+|*B*|−|*A*∩*B*| = 60+40−20 = 80 (principle of inclusion-exclusion).

(D) |*Y*| is all odd numbers and also four even numbers divisible by 15 (30, 60, 90, 120). The total is $60 + 4 = 64.$ *Grading.*

- Each correct answer is 3 points (total 12).
- Explaining both (C) and (D) is another 3 points (total 3).
- Using wrong set notation (∧ instead of ∩ etc.) divides the number of points in half.
- 68 instead of 64 is 2 points (instead of 3).

Question 2.

In all the answers the largest and the smallest value are equal, because we know exactly how the two sets intersect; how many elements belong to just one of the sets *A*, *B*, and how many elements belong to the both sets.

 (A) |*A* ∪ *B*| = |*A*| + |*B*| − |*A* ∩ *B*| = 8 + 5 − 3 = 10 (the principle of inclusion-exclusion).

(**B**) $|A \times (B \times B)| = 8 \cdot 5 \cdot 5 = 200$

(Cartesian product has size that is the product of all participant sets: one can combine three elements from the sets *A*, *B* and *B* in this many ways).

(C) $2^{2^3} = 2^8 = 256$ (the number of elements in the powerset of any set *X* can be obtained by raising 2 to the power $|X|$).

(D) $|A \oplus B| = (8 - 3) + (5 - 3) = 7$ (we remove the common elements from both *A* and *B*). *Grading.*

- Each correct answer is 3 points (total 12).
- Expressions or verbal explanations of the answers is 3 points (total 3).

Question 3.

(A) $a_0 = 3$, $a_1 = 4$, $a_2 = 5 \cdot 4 - 6 \cdot 3 = 2$, $a_3 = 5 \cdot 2 - 6 \cdot 4 = -14$, $a_4 = 5 \cdot (-14) - 6 \cdot 2 = -82$, $a_5 = 5 \cdot (-82) - 6 \cdot (-14) = -326$, $a_6 = 5 \cdot (-326) - 6 \cdot (-82) = -1138.$

(B) The characteristic equation is obtained, if we try to find a_n in the form of a geometric progression r^n : $r^{n+2} = 5r^{n+1} - 6r^n$, or $r^2 - 5r + 6 = 0$. It has two roots: $r_1 = 2, r_2 = 3.$

(C) The general form of the expression for any iterative sequence b_n satisfying the relationship b_{n+2} = $5b_{n+1} - 6b_n$ is as follows:

$$
b_n=A\cdot 2^n+B\cdot 3^n,
$$

where A, B are two constants that depend on the two initial values of the sequence b_n .

(D) We need to solve a system of two equations, to ensure that the formula $a_n = A \cdot 2^n + B \cdot 3^n$ has correct values for $n = 0$ and $n = 1$. We get the following system:

$$
\begin{cases} A+B=3, \\ 2A+3B=4. \end{cases}
$$

Substitute $B = 3 - A$ into the second equation. We get that $2A + 9 - 3A = 4$ and $A = 5$. We also get that $B = -2$. Therefore the exact formula to calculate the sequence a_n is this:

$$
a_n = 5 \cdot 2^n - 2 \cdot 3^n
$$
, where $n \ge 0$.

This actually works, if we plug in the values calculated in (**A**) for $n = 0, ..., 6$. *Grading.*

- Answer in (A) is 4 points.
- Answer in (B) is 4 points.
- Answer in (C) is 3 points.
- Answer in (D) is 4 points.

Question 4.

(A) The algorithm takes all numbers *i* from 1 to n^2 and divides them by all the smaller numbers $j < i$, and adds up all the obtained remainders.

(C) The outer loop is repeated n^2 times. The inner loop is repeated $1+2+3+\ldots+n^2$ times. This is an arithmetic progression. The sum of an arithmetic progression is the arithmetic mean of the first and the last member multiplied by the number of members:

$$
f(n) = \frac{1 + n^2}{2} \cdot n^2 = \frac{n^4 + n^2}{2}.
$$

(B) $f(n)$ is in $O(n^4)$. Therefore we can take $g(n) = n^4$. We can pick another $g(n)$ that is multiplied by some nonzero constant (such as $\frac{n^4}{2}$ $\frac{n^4}{2}$ or 17*n*⁴ or anything else - that also counts as a valid answer). Certainly, $f(n)$ is also in $O(n^k)$ for any $k > 4$, but the function $g(n) = n^4$ is the slowest growing. *Grading.*

- Answer for (A) is 5 points.
- Answer for (B) (any 4th degree polynomial of *n*) is 5 points. An attempt to estimate some arithmetic progression with a different upper limit (say, 1 + 2 + . . . + *n*) gets 2 points.
- Answer for (C) is 5 points. If the answer is provided just for $n = 1000$ (not for any variable), then it is 4 points.

Question 5.

(A) If expressed as a product of two positive integers $120 = ab$, one of the divisors *a* or *b* would be smaller $120 = ab$, one of the divisors *a* or *b* would be smaller than $\sqrt{120} \approx 11$, and the other one would be bigger. We can easily list all the ways to express 120 as a product of two integers:

$$
1 \cdot 120 = 2 \cdot 60 = 3 \cdot 40 = 4 \cdot 30 =
$$

$$
= 5 \cdot 24 = 6 \cdot 20 = 8 \cdot 15 = 10 \cdot 12,
$$

and there are no other factorizations, since all the divisors less than 11 are already listed. Multiplying them all together would give

$$
(120)^8 = 42998169600000000
$$

(B) As a product of prime factors:

$$
(120)^8 = (2^3 \cdot 3 \cdot 5)^8 = 2^{24} \cdot 3^8 \cdot 5^8.
$$

Grading.

- Correct item (A) is 7 points (also floating point answers were fine not all had easy access to the big integer arithmetic).
- Correct item (B) is 8 points.

Question 6.

(A) Counterexample: None

(B) Counterexample: None

(C) Consider counterexample $a = 0$, $b = 11 \cdot 12 \cdot 13 =$ 1716. While it is true that *aRb* and *bRa*, nevertheless $a \neq b$.

(D) Counterexample: None

(E) Counterexample is same as in (C): $a = 0$, $b = 0$ 1716. *Grading.*

- One correct answer is 2 points (total 10).
- Counterexamples for (C) and (E) is 5 points (they are, in fact, the same).

Question 7. Answer: 17

- For 1 of 24 permutations $X = 4$ (all hats stay in place),
- For 0 permutations $X = 3$ (it is not possible for exactly three hats to stay in place, because then the 4th hat also returns to its owner),
- For 6 of 24 permutations $X = 2$ (there are $\binom{4}{2} = 6$ ways how to pick 2 hats that stay in place; and the remaining two hats can switch places only in one way),
- For 8 of 24 permutations $X = 1$ (there are $\binom{4}{1} = 4$ ways how to pick 1 hat that stays in place; and the remaining three hats can rotate in two ways).
- For the remaining $24 (1 + 6 + 8) = 9$ permutations $X = 0$ (no hats stay in place).

Table 1

Random Variable X for the Hat Problem

Permutation	X	$X - E(X)$	$(X - \overline{E(X)})^2$
ABCD	4	3	9
ABDC	2	$\overline{1}$	1
ACBD	\overline{c}	$\mathbf{1}$	1
ACDB	$\mathbf{1}$	$\overline{0}$	$\overline{0}$
ADBC	$\overline{1}$	$\boldsymbol{0}$	$\overline{0}$
ADCD	\overline{c}	1	1
BACD	$\overline{2}$	$\mathbf{1}$	1
BADC	$\overline{0}$	-1	$\mathbf{1}$
BCAD	1	θ	$\overline{0}$
BCDA	$\overline{0}$	-1	1
BDAC	$\overline{0}$	-1	$\overline{1}$
BDCA	1	$\overline{0}$	$\overline{0}$
CABD	$\mathbf{1}$	$\overline{0}$	$\overline{0}$
CADB	$\boldsymbol{0}$	-1	$\mathbf{1}$
CBAD	$\overline{2}$	$\overline{1}$	$\overline{1}$
CBDA	1	θ	0
CDAB	$\overline{0}$	-1	$\overline{1}$
CDBA	$\overline{0}$	$-\overline{1}$	$\mathbf{1}$
DABC	θ	-1	$\mathbf{1}$
DACB	1	$\overline{0}$	$\overline{0}$
DBAC	$\overline{1}$	θ	$\overline{0}$
DBCA	\overline{c}	1	1
DCAB	$\overline{0}$	-1	1
DCBA	0	$^{-1}$	1
Mean	$\mathbf{1}$	0	1

(A) $E(X) = \frac{1}{24} \cdot 4 + \frac{6}{24} \cdot 2 + \frac{8}{24} \cdot 1 = 1$. This means that the expected number of hats that stay in place is exactly 1.

(B) For all 24 permutations, subtract the value $E(X) =$ 1 from every hat experiment outcome. Define x_1, \ldots, x_{24} - all 24 values of the random variable *X* (exactly one value is 4, exactly six values are 2, exactly 8 values are 1, exactly 9 values are 0):

$$
V(X) = \frac{\sum_{i=1}^{24} (x_i - 1)^2}{24} = \frac{24}{24} = 1.
$$

Therefore, $V(X) = 1$ (variance also equals 1, but the unit of measurement is not hats but "hats squared"). *Note.* $E(X) = 1$ is the arithmetic mean over the column *X*, but $V(X) = 1$ is the arithmetic mean over the column $(X - E(X))^2$ (see Table [1](#page-3-0)).

Grading (theoretically max=*20, but most results are not that high).*

• Correctly found $E(X)$ is 5 point.

- Correctly found $V(X)$ is 5 point.
- Justified computation for $E(X)$ is 5 points.
- Justified computation for $V(X)$ is 5 points.

Question 8.

(A) $P(E|H)$ is the outcome of the Binomial distribution: There are $n = 5$ coin-toss experiments; the probability of success for any single experiment is $p = \frac{2}{3}$ (since we know that the day is lucky and hypothesis *H* holds). Therefore,

$$
P(E|H) = {5 \choose 3} p^3 (1-p)^2 = 10 \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^2 = \frac{80}{243}
$$

(B) $P(E|H) \cdot P(H) = \frac{80}{243} \cdot \frac{1}{2} = \frac{40}{243}$, since $P(H) = \frac{1}{2}$ (the *a priori* probability of a lucky day is exactly 1/2).

(C) $P(E|H)$ is the outcome of the Binomial distribution: Again, there are $n = 5$ coin-toss experiments, but now the probability of a single experiment is just $p = \frac{1}{3}$. Therefore,

$$
P(E|\overline{H}) = {5 \choose 3} p^3 (1-p)^2 = 10 \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^2 = \frac{40}{243}
$$

(D) $P(E|\overline{H}) \cdot P(\overline{H}) = \frac{40}{243} \cdot \frac{1}{2} = \frac{20}{243}.$

(E) We can compute $P(E)$ as the sum of two mutually incompatible events: event *E* can happen either on a lucky day or on an unlucky day:

$$
P(E) = P(E|H) \cdot P(H) + P(E|\overline{H}) \cdot P(\overline{H}) = \frac{40}{243} + \frac{20}{243} = \frac{60}{243}.
$$

(F) Use Bayes formula:

$$
P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E|H) \cdot P(H) + P(E|\overline{H}) \cdot P(\overline{H})} = \frac{P(E|H) \cdot P(H)}{P(E)} = \frac{\frac{40}{243}}{\frac{60}{243}} = \frac{2}{3}.
$$

Bayes formula is intuitive: It shows the proportion of the subcase $P(E|H) \cdot P(H)$ (i.e. event *E* hapens on a lucky day) out of the whole probability $P(E)$ = $P(E|H) \cdot P(H) + P(E|\overline{H}) \cdot P(\overline{H})$ (i.e. event *E* happens either on a lucky or unlucky day).

Grading (theoretically max=*20, but most results are not that high).*

- Any item from (A) to (E) is 3 points.
- Bayes formula or a similar expression finding the reverse conditional probability in (F) in 5 points.

Question 9.

 $(A) + : - \sim y \times 63$ z 2, (**B**) $y \sim -6 \times 3$: z + 2, (C) $y \sim 63 \times -z : 2 +$.

Note. In inorder traversal (B) we first visit the first subtree (e.g., y), and only then the parent node (e.g., unary minus ∼). See (Rosen2019, p.811). *Grading.*

- Each correctly written expression is
- Item (B) with switched order of the unary minus and its child node *y* is 3 points instead of 5.
- Minor typos in single characters get 4 or 5 points.
- Any major differences from the correct result do not get points.

6

Question 10.

We start from vertex *I*. At every step we grow the tree by a single edge (so that it stays connected and the newly added edge has the smallest possible weight).

Step	Newly Added Edge
Step 1	$IG, w = 1$
Step 2	$IE, w = 2$
Step 3	$ED, w = 1$
Step 4	$DC, w = 2$
Step 5	$CH, w = 2$
Step 6	$GA, w = 3$
Step 7	AB, $w = 2$
Step 8	IF, $w = 5$

The total weight of all added edges (same as the total weight of the MST) is 18.

Figure 3. MST edges shown in blue.

Grading.

- Incorrectly adding up weights could subtract 1 or 2 points from the total.
- Adding 9 edge weights (or any other number instead of 8 weights) and getting incorrect sum is 11 points (instead of 15).
- Not showing the edges in answers (or displaying them in an order that differs from Prim's algorithm), but still getting something close to MST is about 8 points.