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Quiz 11: Graphs

Question 1. Let G = (V, E) be a graph, where V is the
set of all positive divisors of 144 (including 1 and 144
itself). Two different vertices d1, d2 are connected by
an edge iff one of the numbers divides another (d1 | d2
or d2 | d1). Find the number of vertices |V | and the
number of edges |E| in this graph.
Write two comma-separated integers.

Question 2. How long is the longest simple circuit in
W20? (A simple circuit is a circular path that may visit
vertices multiple times, but does not contain any edge
more than once.)
Write a positive integer.

Question 3. Let G be a planar connected graph with 60
vertices, each vertex has degree 3. How many regions
are there in G?
Write a positive integer.

Question 4. This is an adjacency matrix for some
graph:

MG =



0 1 0 1 0 0 0 0 1
1 0 1 1 1 0 0 0 0
0 1 0 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0
0 1 1 1 0 1 1 1 0
0 0 1 0 1 0 0 1 1
0 0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0 1
1 0 0 0 0 1 0 1 0


.

It is known that G is a planar graph. Find the number
of vertices |V |, number of edges |E| and the number of
regions |R| for this graph.
Write 3 comma-separated integers.

Question 5 (Dudeney2016, Prob.434), “536 Puz-
zles”.

Figure 1. A weighted graph.

A prisoner currently is in the cell “A” (Figure 1). He
has to visit each prison cell no more than once and re-
turn back to the cell “A”. What is the largest number
of prison cells that can be visited in this way?
(Visiting each cell once does not contradict with the
requirement to return back to “A” – the prisoner uses
a circular path between the rooms: every room on the

path, including “A”, is entered once and left once. We
want to know the maximum length of this path.)
Write a positive integer.
Note. You may also want to prove to yourself that the
number is the largest possible.

Question 6 There is a bipartite graph G = (V, E) with
exactly |V | = 17 vertices. (A graph is bipartite, if the
set of vertices V can be split into two parts X, Y so
that all edges are between a vertex in X and a vertex in
Y .) Find the largest possible number of edges in such
a graph.
Write a positive integer.

Question 7 Verify, if these statements are true. A sim-
ple undirected graph is called a cubic graph, if every
vertex has degree 3.
(A) There exists a cubic graph with 7 vertices.
(B) There exists a cubic graph with 6 vertices that is
not isomorphic to K3,3.
(C) There exists a cubic graph with 8 edges.
Write a sequence of 3 comma-separated letters (e.g.
T,T,T or F,F,F).

Question 8. Verify, if these statements are true:
(A) There exists a simple directed graph with indegrees
0, 1, 2, 4, 5 and outdegrees 0, 3, 3, 3, 3. (A graph is sim-
ple, if it is not a multigraph – there is no more than one
edge (u, v) for any vertices u, v.)
(B) There exists a connected undirected simple planar
graph with 5 regions and 8 vertices, each vertex has
degree 3.
(C) There exists a connected undirected simple planar
graph with 8 regions and 6 vertices, each region is sur-
rounded with 3 edges.
Write a sequence of 3 comma-separated letters (e.g.
T,T,T or F,F,F).

Question 9. Use Dijkstras Algorithm to find the short-
est paths from the source vertex s to all other vertices
t, x, y, z (Figure 2). The length of a path is obtained by
adding the weights of the directed edges.

Figure 2. A weighted graph.

Write 4 comma-separated numbers – the shortest paths
to the vertices t, x, y, z respectively.
Note. Dijkstra’s algorithm (Rosen2019, p.747) initial-
izes the set of vertices S that we know the shortest
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paths to (initially it only contains the source vertex
S = {s}; the distance from s to itself is 0; initialize
the distances to all the other vertices to ∞). At every
step consider all the edges that go from the set S to
S , i.e. to the vertices where we still do not know the
shortest paths. Update all the shortest paths (if cross-
ing from the set S to S finds a shorter path than ∞
or the currently known minimum length, then decrease
the estimate for this vertex). Finally, add the minimum
vertex from S to S . Repeat the steps until all vertices
are added to S and all the shortest path estimates have
reached their smallest values.

Question 10 (Dudeney2016, Prob.423), “536 Puz-
zles”. A man starting from the town A, has to in-
spect all the roads shown from town to town (Fig-
ure 3). Their respective lengths, 13, 12, and 5 miles
are all shown. What is the shortest possible route he
can adopt, ending his journey wherever he likes?

Figure 3. Path with repetitions

Write an integer – the length of the shortest route.
Note. This graph obviously has no Euler path (since
there are more than 2 vertices with odd degrees). The
problem is to find a path that is likely not simple (uses
the same edge several times), but that includes every
edge shown and the total of weights is minimal.

Question 11
Somebody placed 24 chess rooks on a 8×8 chessboard
as shown in Figure 4 (each horizontal and each vertical
has exactly 3 rooks).
We imagine that this chess-board defines a bipar-
tite graph between the set of all verticals X =

{A, B,C,D, E, F,G,H} and the set of all horizontals
Y = {1, 2, 3, 4, 5, 6, 7, 8}. Any rook defines an edge be-
tween these two sets. For example, the rook C8 defines
an edge (C, 8).
Find a subset of verticals V ⊆ X such that |V | = 3, but
the neighbor set has size |N(V)| = 5.
Write 3 comma-separated letters in your answer (the
vertices from V). It is sufficient to write just one pos-

Figure 4. Path with repetitions

sible answer, if there are many.

Note 1. For example, the answer F, G, H does not work,
since the set of vertices {F, G, H} ⊆ X is neighboring
with a set of six vertices {1, 3, 5, 6, 7, 8} ⊆ Y , i.e. the
rooks on these three verticals attack six horizontals, but
not five.
Note 2. For the condition of the Hall’s marriage the-
orem we need the inequality |V | ≤ |N(V)| for every
V ⊆ X. You could prove to yourself that it is always
satisfied (also for all the other placements of 24 rooks
where each horizontal and each vertical has 3 rooks).
Note 3. Interpret for yourself what does a “perfect
matching” between the sets X and Y mean in this
subject-area with a chessboard and rooks.
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Answers

Question 1 Answer: 15, 75
Since 144 = 24 ·32, number 144 has (4+1)(2+1) = 15
divisors (the number of ways to pick powers 2a · 3b).
Their Hasse diagram is shown in Figure 5 (transitive
closure has many more arrows that are not shown).
For each vertex d1 we calculate the number of other
vertices that are divisible by d1 (i.e. can be reached by
following one or more arrows in the Hasse diagram).
Adding all those numbers gives the number of edges.

Figure 5. Divisibility Hasse diagram.

Question 2 Answer: 30
All the vertices on the regular 20-gon have degree
equal to 3. This means that we have to drop at least 10
edges before we get a simple path (because any simple
path adds only even number to the degree of any vertex
in a graph). Initially W20 has 20+20 = 40 edges. After
deleting 10 edges (every other edge on the perimeter of
the 20-gon), we are left with 30 edges.

Question 3 Answer: 32
60 vertices (having degree 3 each would create the sum
of all degrees equal to 60 · 3 = 180. The number of
edges equals one half of that; so |E| = 90. The num-
ber of regions can be computed using Euler’s formula:
|V |−|E|+ |R| = 2 (in our case 60−90+ |R| = 2; therefore
|R| = 32.
One example of such graph is truncated icosahedron,
see https://bit.ly/2WaSW6I, but there may be many
others that are not isomorphic to it. Still, all of them
would have the same number of regions due to Euler’s
formula.

Question 4 Answer: 9,17,10
Number of vertices equals the size of the matrix 9 × 9,
so |V | = 9. The number of edges is one half of all the
1s written in the adjacency matrix; therefore |E| = 17.
Since we can assume that the graph G is planar, it sat-

isfies Euler’s formula:

|V | − |E| + |R| = 2.

Therefore the number of regions |R| = 10.
Graph (shown without edge intersections as a planar
graph) is visible on Figure 6. In this picture we can
simply count vertices, edges and regions. But it is
usually time-consuming to create such pictures (and to
verify that they match the adjacency matrix).

Figure 6. A planar graph

Question 5 Answer: 34
It is easy to build a path that visits all rooms except
one. There cannot be a circular path with exactly 35
steps – one can use checkerboard pattern (color all cells
in black and white). Every step switches the color to
the opposite; after exactly 35 color switches the color
would be opposite – the path cannot return back to cell
A.

Question 6 Answer: 72
We know that the sum of two sizes |X| + |Y | = 17, and
the maximum number of edges is |X| · |Y |. The great-
est possible product of two numbers is when they are
closest to each other: 8 · 9 = 72. (We can try out all
combinations of two numbers that add up to 17 to see
that this is the largest one.)
We can write the following algebraic inequalities:

|X| · |Y | ≤
(
|X| + |Y |

2

)2

,

4|X| · |Y | ≤ (|X| + |Y |)2 ,

4|X| · |Y | ≤ |X|2 + |Y |2 + 2|X| · |Y |,
0 ≤ |X|2 + |Y |2 = 2|X| · |Y | = (|X| + |Y |)2.

From the first inequality we imply that |X| · |Y | ≤
(17/2)2 = 72.25. Since the number of edges cannot
be fractional, 72 is indeed the largest number.

Question 7 Answer: FTT
(A) False. No cubic graph can have odd number of
vertices (the sum of all degrees of all vertices should
be even – twice the number of edges).

https://bit.ly/2WaSW6I
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(B) True. K3,3 is bipartite graph (it does not contain any
“triangles”: three vertices that are all mutually con-
nected). But the graph on Figure 7 is not bipartite (so
it is not isomorphic to K3,3.

Figure 7. Cubic graph with 6 vertices.

(C) True. You can draw a regular octagon and add all
the long diagonals. Now every vertex is adjacent with
three vertices (both neighbors and the opposite one).

Question 8 Answer: FFT
(A) False. In a simple directed graph with 5 vertices,
an indegree 5 means that all vertices should point ar-
rows to the given vertex (including the vertex itself).
But in this case there cannot be any vertices with out-
degree 0.
(B) False. A graph with 8 vertices of degree 3 means
that it has 8·3

2 = 12 edges. According to Euler’s for-
mula, the number of regions should be R = 2+E−V =
6. Therefore such a graph should have 6 (not 5) re-
gions.
(C) True. Such graph exists. For example Octahedron
- see https://bit.ly/3f1gnrG.

Question 9 Answer: 8,9,5,7
Set S Weights of S Added to S
{s} w(t, x, y, z) = (10,∞, 5,∞) y (min path 5)
{s, y} w(t, x, z) = (8,∞, 7) z (min path 7)
{s, y, z} w(t, x) = (8, 9) t (min path 8)
{s, t, y, z} w(x) = 9 x (min path 9)

Question 10 Answer: 211
There are altogether 6 vertices with odd degrees (one
of them is A). If we start our travel in A and end it in
any other vertex with odd degree (say, in G), then there
are four more vertices with odd degrees. By adding
edges (C,H) and (I, E) two times, we can build the re-
quired path (each of these edges has weight 5). There-
fore the full length of the path is the sum of all weights:

3 · (12 + 12 + 12) + 3 · (13 + 13 + 5) + (5 + 5).

Figure 8. Path with Repetitions (Solved).

Question 11 Answer: "A,B,D", "A,B,F", "C,E,H",
"C,G,H", "D,E,G"
There are five ways to select the verticals (any one of
them is correct). Since the rooks (as edges linking hor-
izontals with verticals) satisfy the Hall’s Marriage the-
orem, there exists a perfect matching: One can select
8 rooks (out of the 24) so that each rook has its own
horizontal and its own vertical. In other words, they do
not attack each other.

We can start searching this perfect matching using
“backtracking” – first try to pick the minimum possi-
ble horizontal in each vertical (avoiding any attacking
position). If this leads in a dead end, then start moving
the rooks that have been placed last. This very quickly
leads to a solution (Figure 9). There are also many
other perfect matchings.

Figure 9. 8 selected rooks shown red

https://bit.ly/3f1gnrG
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