Worksheet 4: Sets

Question 1. We define three sets in the universe U of integer numbers between 1 and 70 (inclusive):

$$\begin{cases} K_2 &= \{x \in U \mid 2 \mid x\} \\ K_5 &= \{x \in U \mid 5 \mid x\} \\ K_7 &= \{x \in U \mid 7 \mid x\} \end{cases}$$

Find the size of the following sets. Here |X| denotes the number of elements in a finite set (BTW, |X| is also the notation for the cardinality of an infinite set). *Note.* It was not intentional, but vertical bar: | in this exercise happens to be used in three different ways: It is a separator when defining sets K_2 ; it is used to denote divisibility; it also denotes set cardinality.

Question 2. Find a counterexample to refute the following predicate expression:

 $(\exists x \in U, P(x)) \land (\exists x \in U, Q(x)) \rightarrow \exists x \in U, (P(x) \land Q(x)).$

Here P(x) is true iff *P* is a full square (a square of some integer number), Q(x) is true iff *x* is divisible by 5, and *U* is the set of all integers from the interval [120; 130]. *Note.* The three *x*'s in this formula refer to three unrelated (local) variables. If it looks confusing, you can rewrite it like this:

 $(\exists x_1 \in U, P(x_1)) \land (\exists x_2 \in U, Q(x_2)) \rightarrow \exists x_3 \in U, (P(x_3) \land Q(x_3)).$

(A) Identify the variables which you need to pick for your counter-example.

(**B**) Pick the values for these variables to make the above statement false.

Question 3. Determine the cardinality of the following sets (some finite number? equal to $|\mathbb{N}|$? equal to $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$? equal to $|\mathcal{P}(\mathbb{R})|$?)

- (A) The set of positive real numbers from (0; 1) with decimal representation containing only digits 0 and 1?
- (B) The set of positive real numbers from (0; 1) with decimal representation containing only digits 0 and 1 (and it is known that the number of 0s is finite)?
- (C) The set of positive real numbers from (0; 1) that are fully periodic decimal fractions with a period of 2020 digits?

- (D) The set of positive real numbers from (0; 1) that have decimal representation without any digits "9"?
- (E) The set of all irrational $x \in (0; 1)$ such that x^3 is rational?
- (F) Ordered pairs of real numbers x_1, x_2 such that $x_1, x_2 \in (0; 1)$.
- (G) Finite sequences of real numbers: x_1, \ldots, x_n , and all $x_i \in (0, 1)$? (Here *n* can be any positive integer)?
- (H) Infinite sequences of real numbers from (0; 1): $\{x_n\}: x_1, x_2, x_3, \dots$

Question 4. Let $f(x) = \left\lfloor \frac{x^3}{3} \right\rfloor$. Find f(S) if S is: (A) $S = \{2, 1, 0, 1, 2, 3\}$. (B) $S = \{0, 1, 2, 3, 4, 5\}$. (C) $S = \{1, 5, 7, 11\}$.

Is function $f : \mathbb{Z} \to \mathbb{Z}$ injective? Is it surjective? If it is not, mention counterexamples to show this.

Question 5. Determine, if the given set is a powerset of some other set. If yes, which one?

- (A) { \emptyset , { \emptyset }, {a}, {{a}}, {{{a}}}, { \emptyset , {a}}, { \emptyset , {a}}, { \emptyset , {a}}, {a, {a}}, {a, {{a}}}, {{a, {{a}}}, {{a, {{a}}}, {{a, {{a}}}}, {{a, {{a}}}, {{a, {{a}}}}, {{ \emptyset , a, {{a}}}}, {{a, {{a}}}}.
- (B) $\{\emptyset, \{a\}\}.$
- (C) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$.
- (D) $\{\emptyset, \{a\}, \{\emptyset\}, \{a, \emptyset\}\}.$
- (E) $\{\emptyset, \{a, \emptyset\}\}$.

Question 6. Given two sets $A = \{x, y\}$ and $B = \{x, \{x\}\}$, check, if statements are true or false:

- (A) $x \subseteq B$.
- (B) $\emptyset \in \mathcal{P}(B)$.
- (C) $\{x\} \subseteq A B$.
- (D) $|\mathcal{P}(A)| = 4$.

Question 7. We define functions $g : A \rightarrow A$ and $f : A \rightarrow A$, where $A\{1, 2, 3, 4\}$ by listing all argument-value pairs:

$$g = \{(1, 4), (2, 1), (3, 1), (4, 2)\}, f = \{(1, 3), (2, 2), (3, 4), (4, 1)\}$$

Find these functions by listing their argument/value pairs (or establish that they do not exist).

- 2
- (A) Find $f \circ g$.
- (B) Find $g \circ f$.
- (C) Find $g \circ g$.
- (D) Find $g \circ (g \circ g)$.
- (E) Find f^{-1} .
- (F) Find g^{-1} .

Question 8. Find these sums:

- (A) $1/4 + 1/8 + 1/16 + 1/32 + \dots$
- (B) $2 + 4 + 8 + 16 + 32 + \ldots + 2^{28}$.
- (C) $2 4 + 8 16 + 32 \ldots 2^{28}$.
- (D) $1 1/2 + 1/4 1/8 + 1/16 \dots$

Question 9. Find an appropriate O(g(n)) for each function f(n) defined below (pick your g(n) to be the slowest growing among the functions such that f(n) is in O(g(n))).

(A)
$$f(n) = 1^2 + 2^2 + \ldots + n^2$$
.

(B)
$$f(n) = \frac{3n - 8 - 4n^3}{2n - 1}$$
.

(C)
$$f(n) = \sum_{k=1}^{n} k^3$$
.

(D)
$$f(n) = \frac{6n+4n^5-4}{7n^2-3}$$
.

(E)
$$f(n) = \sum_{k=2}^{\infty} k \cdot (k-1).$$

(F) $f(n) = 3n^2 + 8n + 7$

Question 10. For the given functions, find an optimal O(g(n)); find *C* and n_0 (from the definition $|f(n)| < C \cdot |g(n)|$ as long as $n > n_0$).

(A) $f(n) = 3n^4 + \log_2 n^8$.

(B)
$$f(n) = \sum_{k=1}^{n} (k^3 + k).$$

(C) $f(n) = (n+2)\log_2(n^2 + 1) + \log_2(n^3 + 1).$

(D)
$$f(n) = n^3 + \sin n^7$$
.

Question 11. This is a Python fragment; variable n can become very large; t is some fixed parameter. Denote by f(n) the number of operations depending on the variable n, where an operation is an addition or a multiplication, or raising to the power 2. Find the slowest growing g(n) so that f(n) is in O(g(n)).

sum = 0
for i in range(1,n+1):
 for j in range(1,n+1):
 sum += (i*t + j*t + 1)**2

Question 12. There are two functions $f, g : \mathbb{R} \to \mathbb{R}$ defined for all real numbers and taking real values. Find, which predicate logic expressions describe a statement that is logically equivalent to the English sentence "The function f(n) is in O(g(n))". *Note.* There may be multiple correct answers.

- (A) $\forall n \in \mathbb{R} \exists n_0 \in \mathbb{R} \exists C \in \mathbb{R},$ $(n > n_0 \rightarrow |f(n)| \leq C \cdot |g(n)|).$
- (B) $\exists n_0 \in \mathbb{R} \ \forall n \in \mathbb{R} \ \exists C \in \mathbb{R},$ $(n > n_0 \rightarrow |f(n)| \leq C \cdot |g(n)|).$
- (C) $\exists n_0 \in \mathbb{R} \ \exists C \in \mathbb{R} \ \forall n \in \mathbb{R},$ $(n > n_0 \rightarrow |f(n)| \leq C \cdot |g(n)|).$
- (D) $\exists n_0 \in \mathbb{R} \exists C \in \mathbb{R} \forall n \in \mathbb{R},$ $(n > n_0 \to f(n) \le C \cdot |g(n)|).$
- (E) $\exists n_0 \in \mathbb{R} \exists C \in \mathbb{R} \forall n \in \mathbb{R},$ $(n > n_0 \rightarrow |f(n)| \le C \cdot g(n)).$
- (F) $\exists n_0 \in \mathbb{R} \ \exists C \in \mathbb{R} \ \forall n \in \mathbb{R},$ $(n \ge n_0 \to |f(n)| < C \cdot |g(n)|).$
- (G) $\exists n_0 \in \mathbb{Z}^+ \exists C \in \mathbb{Z}^+ \forall n \in \mathbb{R},$ $(n > n_0 \to |f(n)| \le C \cdot |g(n)|).$

Answers

Question 1. Answer:		Question 5. Answer: TBD
$egin{array}{l} K_2\cup K_5 \ K_2\cap K_7 \ \overline{K_7} \end{array}$	42 5 60	Question 6. Answer: TBD
$ \frac{ \overline{K_2 \cap K_5} }{ K_2 \cap K_5 \cap K_7 } $	63 1	Question 7. Answer: TBD
$\frac{ K_2 \cap K_5 \cap K_7 }{ K_2 \cup K_5 \cup K_7 }$ $\frac{ K_2 \cup K_5 \cup K_7 }{ K_2 \cup K_5 \cup K_7 }$	6 46 24	Question 8. Answer: TBD
To find $ K_2 \cup K_5 \cup K_7 $ we might use inclusion- exclusion principle:		Question 9. Answer: TBD
$ K_2 \cup K_5 \cup K_7 = (35 + 14 + 10) - (7 + 5 + 2) + 1 = 46.$		Question 10. Answer: TBD
Question 3. Answer: TBD		Question 11. Answer: TBD
Question 4. Answer: TBD		Question 12. Answer: TBD