Final Review: Relations

Discrete Structures (Final scheduled for Wednesday, April 28, 2021) *You must justify all your answers to recieve full credit*

These sample problems help to prepare for the final. The first two topics on *relations* also need some concepts related to sets, functions, images and preimages of functions and relations.

1 Binary Relations

Properties, functional relations, equivalence and order.

- 1.(a). Given a desription of a binary relation as a bipartite graph, matrix, list, a set-builder expression (or just verbal explanation), find its description in another form.
- 1.(b). Given a binary relation determine if it is a function, an injective, surjective or bijective function.
- 1.(c). Given a description of a binary relation between countable sets, find images of particular values in its domain (including values of functional relations).
- 1.(d). Given some relations find which pairs belong to them.
- 1.(e). Given a binary relation determine if it is reflexive, symmetric, antisymmetric or transitive.
- 1.(f). Given a relation, check if it is an equivalence relation, get the underlying set's partition into equivalence classes (sometimes find one representative in every equivalence class).
- 1.(g). Given a relation, check if it is a partial or total order relation.
- 1.(a). Given a description of some binary relation, convert the relation into some other representation:
 - (a) The binary relation "divides" is defined on set $A = \{1, 2, 3, 4, 5, 6\}$. Represent it in the set/roster notation (i.e. list all pairs). Represent it into the set-builder notation. Represent it as a digraph.
 - (b) The binary relation "less than or equal to" is defined on two sets $A = \{1, 3, 5\}$ and $B = \{2, 4\}$. Represent it as a bipartite graph. Represent it as a matrix.
 - (c) The binary relation $R = \{(a, b) \mid |a b| \le 2\}$ is defined on the set $A = [0, 5] \subseteq \mathbb{R}$. Show its Plane/Cartesian graph.
 - (d) The binary relation $R = \{(a, b) \mid a b \equiv 3 \pmod{8}\}$ is defined on the set $A = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Represent the set A as vertices of a regular octagon and show this relation as a digraph.
- 1.(b). For the given relations determine if it is a functional relation (and if it is functional, is it also injective, surjective and/or bijective).
 - (a) Let us have sets $A = \mathbf{N}$ and $B = \{0, 1, 2\} \times \mathbf{N}$. A relation $R \subseteq A \times B$ is defined as follows:

 $R = \{ (a, (b_1, b_2)) \in A \times B \mid a = 3b_2 + b_1 \}.$

Here $\mathbf{N} = \{0, 1, 2, ...\}$ is the set of all natural numbers.

(b) Let us have sets $A = \mathbf{N}$ and $B = \{0, 1\} \times \{0, 1\}$. A relation $R \subseteq A \times B$ is defined as follows:

$$R = \{ (a, (b_1, b_2)) \in A \times B \mid a \equiv b_1 \pmod{2} \land (a - b_1) = 2b_2 \pmod{4} \}.$$

1.(c). Let $A = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$ be the set of all strings written using just two letters a and b (and ϵ is the empty string). We define a binary relation R on $A \times \mathbf{N}$ (where **N** is the set of all natural numbers $\mathbf{N} = \{0, 1, 2, ...\}$) that contains all pairs (s, n), where n is the number of string s in the shortlex ordering:

 $R = \{(\epsilon, 0), (a, 1), (b, 2), (aa, 3), (ab, 4), (ba, 5), (bb, 6), (aaa, 7), \dots\}$

Find the inverse image $R^{-1}(\{10, 20, 30\})$ of the set $\{10, 20, 30\} \subseteq \mathbf{N}$ for the relation R.

1.(d). Consider the following binary relations:

$$R_{1} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a \leq b\},\$$

$$R_{2} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a > b\},\$$

$$R_{3} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a = b \lor a = b\},\$$

$$R_{4} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a = b\},\$$

$$R_{5} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a = b + 1\},\$$

$$R_{6} = \{(a, b) \in \mathbf{Z} \times \mathbf{Z} \mid a + b \leq 3\}.$$

- (a) Find a pair that is in R_1 , but not in R_3 (or vice versa).
- (b) Find a pair that is in R_1 , but not in R_6 (or vice versa).
- (c) Find a pair that is in R_2 , but not in R_5 (or vice versa).
- (d) Find a pair that is in R_3 , but not in R_4 (or vice versa).
- (e) Find a pair that is in R_5 , but not in R_6 (or vice versa).

1.(e). Let $A = \{0, 1, 2, 3, 4\}$ and let R be a binary relation on this set:

$$R = \{(a, b) \mid a^3 \equiv b \pmod{5}\}.$$

- (a) Is R a reflexive relation?
- (b) Is R an antisymmetric relation?
- (c) Is R a functional relation? (And is it also injective, surjective and/or bijective?)
- 1.(f). Let $A = \{1, 2, 3, 4, 5, 6\}$ and $R \subseteq A \times A$ given by relation matrix:

- (a) Write the matrix of another relation R^* that is the reflexive closure of R.
- (b) Show that R^* is an equivalence relation.
- (c) Compute A/R^* (the partition of A induced by the relation R^*).
- (d) Draw R^* as a directed graph.

1.(g). Let $A = \{1, 2, 3, 4, 5, 6\}$ and let $R \subseteq A \times A$ be a binary relation with these pairs:

 $R = \{(1,1), (1,3), (2,2), (2,5), (3,3), (4,4), (5,4), (5,5), (6,6)\}.$

Let R^* be the transitive closure of R. Is R^* a partial order relation?

2 Manipulating Relations

Closures, n-ary relations and relational algebra.

- 2.(a). Given some relations or functions, find their composition (represent with bipartite graphs or as matrix multiplications).
- 2.(b). Given a binary relation on a single set, compute its powers.
- 2.(c). (Warshall Algorithm) Given a binary relation, compute its transitive closure; show the steps.
- 2.(d). Given a relation, find its reflexive, symmetric, transitive closure (also multiple closures).
- 2.(e). Given n-ary relations, apply the 6 relational algebra operations; show relation tables or just determine their size.
- 2.(f). Given *n*-ary relations, compute inner join, left outer join, right outer join and full outer join of relations.
- 2.(a). Let $A = \{a, b\}$, $B = \{0, 1, 2\}$ and $C = \{x, y\}$ be three sets and let us define two relations $R \subseteq A \times B$ and $S \subseteq B \times C$ (in set/roster notation):

$$R = \{(a, 0), (a, 2), (b, 1)\},\$$

$$S = \{(0, x), (0, y), (1, y), (2, y)\}.$$

- (a) Show R and S in matrix notation (or bipartite graph notation, if you like it better).
- (b) Show the composition $S \circ R$ in matrix notation (or bipartite graph notation).
- 2.(b). Let $A = \{1, 2, 3\}$ and R is a binary relation on A defined by this matrix:

$$M_R = \left(\begin{array}{rrrr} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Compute the power R^3 of this relation.

2.(c). Given the relation on set $A = \{0, 1, 2, 3\}$ shown in Figure 1, use Warshall algorithm to compute its transitive closure.

Figure 1: Relation for the Warshall algorithm.

2.(d). Let $A = \{a, b, c\}$ be a set and let R be a binary relation on A defined by the following matrix:

$$M_R = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right).$$

- (a) Find the matrix of R_1 which is the transitive closure of R.
- (b) Find the matrix of R_2 which is the reflexive closure of R_1 .
- (c) Find the matrix of R_3 which is the symmetric closure of R_2 .

- (d) Is the relation R_3 (obtained after all three successive closures) itself reflexive, symmetric and transitive?
- 2.(e). Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ be a set and R is a ternary relation:

$$R = \{ (a, b, c) \mid \gcd(a, b) = c \}.$$

(a) Find the number of rows in this relation. I.e. how many triples (a, b, c) satisfy this definition

(b) Let a, b, c be the column names in this ternary relation R. We compute two more relations from R:

$$R_1 = \sigma_{(c=3\lor c=5)}(R),$$
$$R_2 = \pi_{a,b}(R_1).$$

Represent both R_1 and R_2 with their relational tables.

2.(f). We have two relational tables R_1 and R_2 .

$$R_{1} = \begin{bmatrix} a & b & id \\ A1 & B1 & 11 \\ A2 & B2 & 11 \\ A3 & B3 & 13 \end{bmatrix} \qquad R_{2} = \begin{bmatrix} id & c & d \\ 11 & C1 & D1 \\ 12 & C2 & D2 \\ 13 & C3 & D3 \end{bmatrix}$$

- (a) Compute the inner join $R_1 \bowtie R_2$ on column *id*.
- (b) Compute the right join of the same relations on column *id*.