
Homework 2
Discrete Structures

Due Tuesday, January 19, 2021
*Submit each question separately in .pdf format only*

1. Let P (x) be the statement “x is a perfect square” and Q(x) be the statement “three times
x is a perfect square”.

(a) Write the following quantifications as sentences in English:
i. ∀ x ∈ Z (∀ y ∈ Z ((Q(x) ∨ P (x)) ↔ (x− y > 0))

For all integers x, y, x− y is positive if and only if x is a perfect square or 3x is
a perfect square.

ii. ∃ x ∈ Z (∃ y ∈ Z (∀ z ∈ Z ((x ̸= y) ∧ (P (x) → Q(y + z)))))

For all integers x, y, z with x different from y, if x is a perfect square, then
3y + 3z is a perfect square.

(b) Write the following sentences in English as quantifications:
i. Every integer is one less or two more than a perfect square.

∀ x ∈ Z (P (x+ 1) ∨ P (x− 2))

ii. It is never the case that a perfect square is six times a different perfect square.
¬ (∃ x ∈ Z (∃ y ∈ Z (P (x) ∧ (x = 6y) ∧ P (y) ∧ (x ̸= y))))

2. For a set of three cities define predicates Plane(x, y) and Rail(x, y) that are true iff there
is a direct link by plane or rail, respectively, from city x to city y. These are represented
by tables and diagrams below.

Plane(x, y) :

x
y

A B C

A F T T

B T F T

C T T F

Rail(x, y) :

x
y

A B C

A F T F

B T F T

C T F F

Write the following Boolean propositions with quantifiers and justify, why these state-
ments are true or false.

(a) From any city there is a direct plane-link to some other city.

Let S = {A,B,C} be the set of all cities. Omitting this set does not cause ambiguity
in this question, but it looks neater, if quantifiers specify their domain set.
Proposition: ∀ x ∈ S ∃ y ∈ S ((x ̸= y) ∧ Plane(x, y)).
Truth value: This statement is true, because every row in the Plane table above
has at least one T.
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(b) From any city one can go to any other city in two steps like this: First take a plane-
link and then take a rail-link.

Proposition: ∀ x ∈ S ∀ y ∈ S ∃ z ∈ S ((x ̸= y) → (Plane(x, z) ∧ Rail(z, y))).
Truth value: This statement is false. Assume that your source city (x in the above
formula) is B, and your destination city is y = C. Then you would need to have
the intermediate city z = B (the only rail-link into C is from B), but there is no
plane-link from the city B to itself.

(c) No matter what are the cities, if it is possible to go from a city x to some other
city y with two plane-links, then it is also possible to go from x to y using a single
plane-link.

Proposition: ∀ x ∈ S ∀ z ∈ S ∀ y ∈ S (Plane(x, z) ∧Plane(z, y) → Plane(x, y)).
Truth value: This statement is false. One can go from x = A to y = A with two
plane-links (for example, from A to B and then from B to A), but one cannot go
from A to A with just one link: There is no direct plane connection from A to itself.
Note 1. A two-argument predicate with this property is called a transitive relation.
For example, if u ≤ v and v ≤ w, then also u ≤ w; and we say that the relation ≤
is transitive.
Note 2. If you interpreted the problem in such a way that x and y must be two
different cities, and had this precondition (x¬y) in your predicate statement, then
the statement becomes true, since you can travel between any two different cities
via the third city (and also can travel directly).

3. Consider the following sets.

• Let R3 be the set of all points in a three-dimensional space. That is, any point
A = A(xA, yA, zA) ∈ R3 in this set has three real coordinates xA, yA, zA ∈ R.

• Let P be the set of all two-dimensional planes in R3.

Let A,B ∈ R3 and α, β ∈ P . Consider the following predicates.

• S(A,α) : “the plane α goes through the point A”, or equivalently, “the point A lies
in the plane α”

• I(A,B) : “the points A and B are the same”
• I(α, β) : “the planes α and β are the same”

Using only these sets and predicates, express the following new predicates and Boolean
propositions.

(a) Predicate U(A,B,C, α): The plane α goes through the points A,B,C ∈ R3.

Translation: U(A,B,C, α) := S(A,α) ∧ S(B,α) ∧ S(C, α).

(b) Predicate V (α, β): The planes α and β are parallel. That is, they do not share any
points.
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Translation: V (α, β) := ∀A ∈ R3 (¬S(A,α) ∨ ¬S(A, β)).
(By De Morgan’s law it is the same as ¬∃A ∈ R3 (S(A,α) ∧ S(A, β)).

(c) Predicate W (A,B,C): The points A,B,C ∈ R3 are on the same line.

Translation:
W (A,B,C) := ∃α ∈ P ∃β ∈ P (¬I(α, β) ∧

∧ (S(A,α) ∧ S(B,α) ∧ S(C, α)) ∧ (S(A, β) ∧ S(B, β) ∧ S(C, β))).

Or use a predicate U(A,B,C, α) defined above:

W (A,B,C) := ∃α ∈ P ∃β ∈ P (¬I(α, β) ∧ U(A,B,C, α) ∧ U(A,B,C, β)).

Note. In other words, there are two different planes containing all three points.

(d) Proposition Pr1: There exist four points in R3 such that no plane goes through them
all.

Translation: Pr1 :=

∃A,B,C,D ∈ R3 ∀α ∈ P (¬S(A,α) ∨ ¬S(B,α) ∨ ¬S(C, α) ∨ ¬S(D,α)).

(e) Proposition Pr2: For any three points in R3, there exist three planes such that all are
parallel, the first plane goes through the first point, the second plane goes through
the second point, and the third plane goes through the third point.

Translation: Pr2 :=

∀A,B,C ∈ R3 ∃α, β, γ ∈ P (V (α, β) ∧ V (α, γ) ∧ (S(A,α) ∧ S(B, β) ∧ S(C, γ))).

You may use 2 predicates defined above (and also predicates U, V,W , if they are already
defined in earlier steps). You may also use Boolean connectors ¬,∧,∨,⊕,→,↔ and
quantifiers. Be sure to indicate over which set the quantifiers operate.

4. Let △ABC be a triangle in the plane, with vertices A = A(xA, yA), B = B(xB, yB), and
C = C(xC , yC).

(a) Suppose that △ABC is equilateral and that A,B have integer coordinates (that is,
xA, yA, xB, yB ∈ Z). Prove that the area of △ABC is an irrational number.

Proof: Denote the length of the side |AB| by a. Since xA, yA, xB, yB are all integers,

|AB|2 = (xA − xB)
2 + (yA − yB)

2 ∈ Z.
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The equality holds by the Pythagorean theorem. We also know that an area of an
equilateral triangle with side a is

S△ABC =
1

2
a2 sin 60◦ =

a2
√
3

4
. (1)

Claim #1:
√
3 is an irrational number.

Assume by contradiction that
√
3 = p

q
, which is an irreducible fraction for some

positive integers p, q. Then, after squaring both sides, 3q2 = p2 and we get that p2

is divisible by 3. Therefore p itself is divisible by 3 and can express p = 3k for some
integer k. Then 3q2 = (3k)2 = 9k2 or q2 = 3k2. We also get that q2 is divisible by
3. Thus both p and q are divisible by 3; it contradicts the assumption that there is
an irreducible fraction equal to

√
3.

(Claim #1 is proven.)

Claim #2: The product of a rational number r ̸= 0 and an irrational number α is
always irrational.
Assume by contradiction that r ·α = r1, where r1 is a rational number. In this case
we can express α = r1/r, and it would be rational (as a fraction of two rational
numbers). It contradicts the assumption that α is irrational.
(Claim #2 is proven.)

Return to the equation (1). S△ABC equals the product of a rational number a2

4
=

(xA−xB)2+(yA−yB)2

4
and an irrational number

√
3 (by Claim #1). Their product is

irrational (by Claim #2).

(b) Suppose that A,B,C have integer coordinates. Prove that the area of △ABC is a
rational number.

Proof: Let △ABC have all integer coordinates. Use Pick’s theorem: since ABC is
a simple polygon (no sides intersecting other sides), its area is S△ABC = i + b

2
− 1,

where i is the number of interior points and b is the number of boundary points.
From here we conclude that the area is even an integer number (or a half of an
integer number). So it must be a rational number.
If you do not want to use Pick’s theorem, draw a bounding rectangle around the
triangle ABC using the gridlines. It has integer area, and S△ABC can be obtained
by subtracting two or three orthogonal triangles with integer (or half-integer) areas.
Figure 1 shows both methods to compute the area. By Pick’s theorem

S△ABC = 16 +
4

2
− 1 = 17.

By subtraction of gray triangles:

S△ABC = SCKLM − SCKA − SALB − SBMC = 42− 7 · 4
2

− 2 · 5
2

− 6 · 2
2

= 17.

(c) Is it possible for △ABC to be equilateral triangle and for A,B,C to have rational
coordinates? Find an example of such a triangle or prove that no such triangle
exists.
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Figure 1: Triangle ABC with all integer vertices.

Statement. It is not possible to draw an equilateral triangle ABC with all rational
coordinates.
Proof. Assume that an equilateral △ABC has all six coordinates xA, yA, xB, yB,
xC , yC in Q (all coordinates are rational). All six numbers have denominators;
denote them by q1, q2, q3, q4, q5, q6. Multiply all the coordinates by the product q1 ·
q2 · q3 · q4 · q5 · q6. After this manipulation, the triangle is uniformly scaled (it is still
equilateral triangle) and the coordinates for A,B,C are now integers.
By (a) the triangle △ABC has irrational area (it is equilateral, and the square of its
side a2 is an integer). By (b) the triangle △ABC has rational area (all vertices are
integers). The number S△ABC cannot be rational and irrational at the same time.
This is a contradiction.

Note. This note refers to some knowledge that was not covered in the textbook and in the class
(until now), but it will be important as we move on to Chapter 2.6 (matrices). This problem shows
that there are two very different and incompatible alternatives:
Alternative 1. One can certainly draw equilateral triangles on a grid paper. But in (a) it is
shown that such a triangle (if two vertices A,B have integer coordinates) will have irrational area
and the third vertex will also be irrational. See Figure 2 – it shows points A(0; 0) and B(15, 4),
and the third point C obtained by rotating the line segment AB counterclockwise by 60◦. Since
we are rotating around the origin A(0; 0), the coordinates of C can be obtained, using Rotation
matrix (see https://bit.ly/3pc1c3F):(

xC

yC

)
=

(
cosα − sinα
sinα cosα

)
·
(

xB

yB

)
.

Let us carry out this calculation and use values xB = 15, yB = 4, and α = 60◦ = π
3 .{

xC = xB · cosα− yB · sinα = 15 · 1
2 − 4 ·

√
3
2 = 4.035898384862247 . . . ,

yC = xB · sinα+ yB · cosα = 15 ·
√
3
2 + 4 · 1

2 = 14.990381056766578 . . . .

In this case C has irrational coordinates (they can be made close to integer values, but they will
never match integers exactly). And the area of the triangle △ABC is irrational as well.
Alternative 2. One can draw a triangle △ABC with vertices located exactly in the grid intersec-
tions (all integer coordinates). In this case the area is easy to compute; it is always an integer (or
an integer plus 1

2 ). Furthermore, it can be very close to an equilateral triangle, but it will never
be exactly equilateral one.
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Figure 2: Equilateral △ABC with irrational coordinates C (rounded to 5 places).

Hint: You may use Pick’s theorem for part (b): https://bit.ly/39m3qXH.

5. Find your Student ID in ORTUS or ask the instructor(s). It has format similar to this:
201RDB999, but the last three digits may be different. Just extract the last three digits
and we denote this number by abc. In our example abc = 999. Then find the expression
N = abc%30 + 1 (the remainder when dividing this number by 30 plus 1). In our case
N = 9+ 1 = 10. After that search what are the tautologies posted by “mathslogicrobot”
for December N , and take the top tautology from the list. (If the bot did not tweet any
tautology on that day, take the following day.)
In our example, take December 10, 2020. Visit the Twitter website: https://twitter.
com/; enter the search string to find all the results between “since” and “until” (see
Figure 3).

Figure 3: Finding a Tautology from Dec 10.

Add the forall quantifier and prove the corresponding Lemma in Coq. Submit a file
named tautology.v as the solution for your Problem 5. In our example, the tautology
you have to prove is this (see Figure 4.)

Figure 4: Coq IDE Screenshot.
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Your proof can import a classical logic axiom, if necessary. But the proof should not use
”Admitted” or ”tauto” or any other trivial method. Instead, your proof should be a valid
step by step application of Coq tactics from ”Proof” to ”Qed”.

Sample Answer. There are about 30 different tautologies (depending on your Student
ID; all posted during December, 2020). Visit https://bit.ly/35ZsvXx to display the
list of tautologies posted on January 1. We can discuss all of them. Below is the proof of
the first tautology posted in the year 2021:

∀a ∈ Prop ∀b ∈ Prop (¬¬((a ∨ (b ↔ a)) ∨ b)).

In Coq Prop denotes the set of all propositions taking values True or False. The proof
below shows the “brute-force” proof – simply sort the cases when variables b and a are
true or false (using the Excluded Middle axiom from Classical_Prop named classic).
There could be more “beautiful” proofs (not using case-by case sorting too much), but
for them we would need additional lemmas, such as regrouping items in a disjunction (∨)
or transforming disjunctions into implications.

File tautology.v

1 Require Import Classical_Prop.
2

3 Lemma Jan1: forall a b: Prop, ~~((a \/ (b <-> a)) \/ b).
4 Proof.
5 intros a b.
6 assert ((a \/ (b <-> a)) \/ b) as H.
7 pose (classic b) as H2.
8 destruct H2 as [bTrue | bFalse].
9 right.

10 exact bTrue.
11 left.
12 pose (classic a) as H3.
13 destruct H3 as [aTrue | aFalse].
14 left.
15 exact aTrue.
16 right.
17 split.
18 intros bTrue.
19 contradiction (bFalse bTrue).
20 intros aTrue.
21 contradiction (aFalse aTrue).
22 unfold not.
23 intros H4.
24 contradiction (H4 H).
25 Qed.
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