Homework 3

Discrete Structures Due Tuesday, January 26, 2021 **Submit each question separately in .pdf format only**

1. (a) Given the Venn diagram on the left, write all the elements of the sets on the right.

(b) Describe the following sets using *A, B, C, D* from above and set operations on them.

$$
E = \{16, 29, 0\} \qquad F = \{6, 7, 16, 19\} \qquad G = \{3, 18, 0, 4, 7\}
$$

 $E = (A \cap B) \setminus \overline{(C \cup D)}$ $F = ((A \cap B) \setminus D) \cup ((C \cup D) \setminus A)$ $G = (D \cup B) \setminus (C \cup (A \setminus B))$

(c) Simplify the following sets as much as possible. That is, rewrite them without using the union *∪* or intersection *∩* symbols.

$$
X = \bigcup_{i=0}^{\infty} [i, i+1] \qquad Y = \bigcap_{n=1}^{\infty} \left[0, \frac{1}{n} \right] \qquad Z = \bigcap_{n=1}^{\infty} \left\{ \frac{n}{x} \; : \; x \in \mathbb{Z}_{\geqslant n} \right\}
$$

$$
X = \mathbb{R}_{\geqslant 0} \qquad Y = \{0\} \qquad Z = \left\{ \frac{1}{n} \; : \; n \in \mathbb{N} \right\}
$$

- 2. Let A, B, C be sets, and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions.
	- (a) Using logical symbols, express the following statements.
		- i. *g* is injective when restriced to the range of *f*

$$
\forall b_1, b_2 \in f(A) ((g(b_1) = g(b_2)) \rightarrow (b_1 = b_2)) \square
$$

ii. there exists an element in *C* whose preimage in *q* is not $f(a)$ for any *a* in *A ∃ c* \in *C* (\forall *a* \in *A* ($g^{-1}(c) \neq a$)) \Box

(b) If f and q are injective, prove that $q \circ f$ is injective.

Let $a_1, a_2 \in A$ and suppose that $g(f(a_1)) = g(f(a_2))$. Since the codomain of *f* is *B*, $f(a_1)$, $f(a_2) \in B$. Since *g* is injective and $g(f(a_1)) = g(f(a_2))$, it must be that $f(a_1) = f(a_2)$. Since *f* is injective and $f(a_1) = f(a_2)$, it must be that $a_1 = a_2$. Hence $q \circ f$ is injective. \Box (c) If $g \circ f$ is surjective, prove that g must be surjective.

Suppose that *g* is not surjective. That is, suppose that there exists some $c \in C$ with $c \notin g(B)$. Since $f(A) \subseteq B$, it follows that $c \notin g(f(A))$. Since $g \circ f$ is surjective, we have that $C = (g \circ f)(A) = g(f(A))$. This is a contradiction, as $c \in C$, but $c \notin g(f(A))$. Hence our initial assumption was false, and so *g* is surjective. \Box

- 3. Let *A, B, C* be arbitrary sets in the same universe *U*. Prove or disprove the following statements:
	- (a) $(B \cup C) A = (B C) \cup (C A).$

The set identity is false; see the comparison of the left side and the right side in Figure 1. Consider elements that belong to *A* and *B*, but not $C((A \cap B) - C)$. They do not belong to the left side, but they do belong to the right side. Therefore this identity is not valid for arbitrary sets. (For certain sets having $(A \cap B) - C = \emptyset$ it is tr[ue](#page-1-0), but these are special cases only.)

Figure 1: Illustration that, in general, $(B \cup C) - A \neq (B - C) \cup (C - A)$.

(b)
$$
(B \oplus C) - A = (B - A) \oplus (C - A)
$$
.

The set identity is true.

The left side contains elements that belong just to one of the sets *B* or *C* (namely, $B - (A \cup C)$ or $C - (A \cup B)$).

And the right side also contains exactly those elements. See Figure 2.

Figure 2: Illustration that $(B \oplus C) - A = (B - A) \oplus (C - A)$.

 \Box

(c)
$$
\overline{A} \times \overline{(B \cup C)} = \overline{A \times (B \cup C)}
$$
.

```
\Box
```
The set identity is false.

The right side of the equality contains pairs (x, y) , where (x, y) is outside the Cartesian product $A \times (B \cup C)$ (i.e. $x \notin A$ or $y \notin (B \cup C)$). The left side of the expression requires that both *x* and *y* belong to the complements ($x \notin A$ and $y \notin (B \cup C)$).

For example, if the universe of all *A, B, C* is the set of all integers **Z**, and we define:

- A all integers divisible by 2,
- B all integers divisible by 3,
- C all integers divisible by 5.

In this case, the left side $\overline{A} \times (\overline{B \cup C})$ contains just those $(x, y) \in \mathbf{Z} \times \mathbf{Z}$ for which **both** *x* is odd (not divisible by 2); **and** *y* is not divisible either by 3 or 5.

On the other hand, $A \times (B \cup C)$ also contains elements such as $(x, y) = (2, 1)$ (where *x* is divisible by 2, but *y* is not divisible either by 3 or 5), and also $(x, y) = (1, 3)$ (where *x* is not divisible by 2, but *y* is divisible by 3 or 5). \Box

- 4. Prove or disprove the following statements about power sets.
	- (a) There is a set X such that its powerset $\mathcal{P}(X)$ equals

$$
\{\varnothing, \{a\}, \{\varnothing\}, \{a, \{\varnothing\}\}\}.
$$
\n⁽¹⁾

Answer. The set cannot be a powerset of any set *X*.

Let us assume by contradiction, that there is some *X* such that (1) is $\mathcal{P}(X)$. Since any *X* it is a subset of itself (and thus $X \in \mathcal{P}$), the set *X* must appear as one of the elements in *P*.

Case 1. If $X = \{a, \{\emptyset\}\}\$, one of its subsets is the set containin[g](#page-2-0) a single element $\{\emptyset\}$ ∈ *X*. Thus $\{\{\emptyset\}\}\subseteq X$ and $\{\{\emptyset\}\}\in \mathcal{P}(X)$. But we can see that the set (1) does not contain such an element. It does contain a different element: *{*∅*}* (which should not be there). Surrounding it with an extra pair of parentheses would create a set that is the powerset of *X* as in (2).

$$
\{\varnothing, \{a\}, \{\{\varnothing\}\}, \{a, \{\varnothing\}\}\}.
$$
\n⁽²⁾

Case 2. If *X* is \emptyset , or $\{a\}$, or $\{\emptyset\}$, th[en](#page-2-1) $\mathcal{P}(X)$ cannot equal the expression (1), since these are 0-element or 1-element sets, and their powersets cannot have 4 elements as (1) does.

 \Box

(b) Th[ere](#page-2-0) is a set X such that its powerset $\mathcal{P}(X)$ equals

$$
\{\varnothing, \{\varnothing\}, \{\{a\}\}, \{\{a,b\}\}, \{\varnothing, \{a\}\}, \{\varnothing, \{a,b\}\}, \{\{a\}, \{a,b\}\}, \{\varnothing, \{a\}, \{a\}\}, \{\alpha\}
$$

Answer. The set $X = \{ \emptyset, \{a\}, \{a, b\} \}$ is such that $\mathcal{P}(X)$ equals (3). This 3-element set *X* has these subsets: 1 set with zero elements: ∅, 3 sets with one element: *{*∅*}, {{a}}, {{a, b}}*,

3 sets with two elements: $\{\emptyset, \{a\}\}, \{\emptyset, \{a,b\}\}, \{\{a\}, \{a,b\}\},$ 1 set with three elements $(X$ itself): $\{\emptyset, \{a\}, \{a, b\}\}.$ We can check that all these sets (and nothing else) is in (3) .

(c) For any two sets *A* and *B*, $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ iff $A \subseteq B$.

The statement is true. Since it contains biconditional "iff", the proof has two parts: **Part 1.** $A \subseteq B \rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$. Assume that $A \subseteq B$; let us prove that $P(A) \subseteq P(B)$. Namely, let $X \in P(A)$ be any element in $\mathcal{P}(A)$; and it means that *X* is a subset of *A*. Since $A \subseteq B$, *X* is also a subset of *B*. So we also must have $X \subseteq \mathcal{P}(B)$. **Part 2.** $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ → $A \subseteq B$. By contradiction, assume that $A \not\subseteq B$. In this case there should be element $a \in A$ (and $a \notin B$). Then the set $\{a\}$ is in $\mathcal{P}(A)$, but at the same time $\{a\}$ is not in $\mathcal{P}(B)$, because ${a}$ is not a subset of *B*. This is a contradiciton, since the assumption was $P(A) \subseteq P(B)$; but we just found a counterexample. Therefore *A* must be a subset of *B* whenever $P(A)$ is a subset of $P(B)$.

5. Prove the following three tautologies using Coq. Submit your file tautology.v as the solution for your Problem 5.

```
Lemma Sample5A: forall P Q:Prop, \sim (\simP /\ \simQ) -> P \/ Q.
Proof.
  (* Place your proof here *)
Qed.
Lemma Sample5B: forall P Q:Prop, (P \rightarrow Q) \rightarrow (\sim P \setminus Q).
Proof.
  (* Place your proof here *)
Qed.
Lemma Sample5C: forall P Q:Prop, (P \rightarrow Q) <-> (\sim Q \rightarrow \sim P).
Proof.
  (* Place your proof here *)
Qed.
```
Note. Most lemmas in the non-constructive mathematics are proven using some tautology as an axiom. Either the "NNPP axiom" ($\neg\neg A \rightarrow A$, double negation elimination) or the "classic axiom" (*A ∨ ¬A*, the law of the Excluded Middle). See the link *Week3 > Two Nonconstructive Proofs of the Same Lemma* in ORTUS. You can try out whichever method you want. For these axioms to work the first line in your proof should be: Require Import Classical_Prop.

A sample answer file tautology.v with full proofs is provided below; there are certainly many other ways to prove these 3 tautologies. Please note that every lemma uses some classical result (in our case NNPP or classic).

```
\Box
```
 \Box

```
Require Import Classical_Prop.
Lemma Sample5A: forall P Q: Prop, \sim (\simP /\ \simQ) -> P \/ Q.
Proof.
 intros P Q.
 intros H.
 apply NNPP.
 unfold not.
 intros H2.
 unfold not in H.
 apply H.
 split.
 intros H3.
 apply H2.
 left; exact H3.
 intros H4.
 apply H2.
 right; exact H4.
Qed.
Lemma Sample5B: forall P Q: Prop, (P \rightarrow Q) \rightarrow (\sim P \setminus Q).
Proof.
 intros P Q.
 intros H.
 destruct (classic P) as [H2|H3].
 right.
 apply (H H2).
 left.
  exact H3.
Qed.
Lemma Sample5C: forall P Q: Prop, (P \rightarrow Q) <-> (\sim Q \rightarrow \sim P).
Proof.
 intros P Q.
 split.
 - intros H.
   intros H2.
    intros H3.
    contradiction (H2 (H H3)).
 - intros H4.
    intros H5.
    apply NNPP.
    intros H6.
    contradiction ((H4 H6) H5).
Qed.
```