
Homework 5
Discrete Structures

Due Tuesday, February 9, 2021
Submit each question separately in .pdf format (except question 5)

1. (a) Trace out the values i, j,m for the binary search algorithm (Algorithm 3 on page
206) on the integer 10 and the list 1, 3, 4, 5, 8, 10, 11, 12, 15.

i 1 1 1 6 6 6 6 6

j − 9 9 9 9 7 7 6

m − − 5 5 7 7 6 6

(b) Trace out the list values ai in the list a1 = 6, a2 = 3, a3 = 8, a4 = 2, a5 = 1, a6 =
4, a7 = 10 for the bubble sort algorithm (Algorithm 4 on page 208).

a1 6 3 3 3 3 3 3 3 2 2 1

a2 3 6 6 6 6 2 2 2 3 1 2

a3 8 8 2 2 2 6 1 1 1 3 3

a4 2 2 8 1 1 1 6 4 4 4 4

a5 1 1 1 8 4 4 4 6 6 6 6

a6 4 4 4 4 8 8 8 8 8 8 8

a7 10 10 10 10 10 10 10 10 10 10 10

(c) Trace out the values s, j for the naive string matching algorithm (Algorithm 6 on
page 209) on the strings t = mississippi and p = si.

s 0 0 1 2 3 3 3 4 5 6 6 6 7 8 9

j − 1 1 1 1 2 3 1 1 1 2 3 1 1 1

2. The ternary search algorithm locates an element in a list of strictly increasing integers
by successively splitting the input list into three sublists of equal size, and restricting the
search to the sublist in which the target integer lies.

(a) Implement the ternary search algorithm in pseudocode, writing an algorithm that
locates the given element in a list or reports that it does not exist. Follow the
example of the binary search algorithm on page 206.

1

The first call of this algorithm looks like this:

Ternary-Search(x : integer, A : sorted list, 1, n).
We search item x in the list (already sorted in increasing order: a1 < a2 < . . . < an),
and also the left and the right endpoint for the search (initially the left endpoint is
ℓ = 1 and the right endpoint is r = n).
In the first step and all the subsequent steps do the following: If ℓ = r, the search
interval is reduced to a single number and we finish. Otherwise, compute two “mid-
points” m1 and m2 that subdivide the list [aℓ, . . . , ar] in approximately 3 equal parts.
Compare the searchable x with one of the endpoints m1 (and if it is not smaller,
then also with m2).

Ternary-Search(x : int, A : sortedList, ℓ : int, r : int)
1 while ℓ < r (For the initial call ℓ = 1, r = n)
2 m1 = ℓ+ ⌊(r − ℓ)/3⌋
3 m2 = ℓ+ ⌊(2(r − ℓ) + 1)/3⌋
4 if x ≤ A[m1]
5 Ternary-Search(x,A, ℓ,m1)
6 else if x ≤ A[m2]
7 Ternary-Search(x,A,m1 + 1,m2)
8 else
9 Ternary-Search(x,A,m2 + 1, r)
10 if x ≤ A[ℓ]
11 location := ℓ
12 else
13 location := Not Found
14 return location

Here are some examples how the initial interval [1;n] is split into 3 (almost) equal
parts for some small values of n. (m1 and m2 are computed on Lines 2,3 of the
pseudocode.)
ℓ r m1 m2 [ℓ, r] → [ℓ,m1], [m1 + 1,m2], [m2 + 1, r]
1 2 1 2 [1; 2] → [1; 1], [2; 2],−
1 3 1 2 [1; 3] → [1; 1], [2; 2], [3; 3]
1 4 2 3 [1; 4] → [1; 2], [3; 3], [4; 4]
1 5 2 4 [1; 5] → [1; 2], [3; 4], [5; 5]
1 6 2 4 [1; 6] → [1; 2], [3; 4], [5; 6]
1 7 3 5 [1; 7] → [1; 3], [4; 5], [6; 7]
1 8 3 6 [1; 8] → [1; 3], [4; 6], [7; 8]
1 9 3 6 [1; 9] → [1; 3], [4; 6], [7; 9]

Note that interval of length 9 ([1; 9]) splits into three intervals of length 3 ([1; 3],
[4; 6], [7; 9]), any interval of length 3 is split into three intervals of length 1 (where
the while loop stops).

(b) What is the worst case for this algorithm? Give an example input.

Since the splitting of intervals (if n is not divisible by 3) creates three unequal parts,
we need to work backwards to build the worst-case example for any given number
of iterations of the while loop. Denote the number of iterations of while by k.

2

• k = 1 iteration is first achieved for n1 = 2 = 30 + 1. (Each iteration needs at
most two lookups in the array A[i] to compare with x).

• k = 2 iterations are first achieved for n2 = 4 = 31 + 1.
• k = 3 iterations are first achieved for n3 = 10 = 32 + 1.
• k = 4 iterations are first achieved for n4 = 28 = 33 + 1.

In general, k iterations are first achieved for nk = 3k−1 + 1. But for these values nk

that are only slightly larger than 3k−1 we would only use one comparison: We would
make a recursive call on Line 5 of the algorithm (and avoid comparison on Line 6).
Since we will need the worst case for the number of comparisons (not the iterations
of the while loop), we need to ensure that the Line 6 is evaluated for every recursive
call. In this case the worst-case numbers will be different.

• k = 1 iteration is first achieved for n′
1 = 2. Two comparisons are needed, if we

search A[2] in A[1..2].
• k = 2 iterations (2 comparisons each) are first achieved for n′

2 = 5. The worst
case happens, if we search A[4] in A[1..5]. (First iteration splits [1; 5] into [1; 2],
[3; 4], [5; 5] and picks [3; 4]. The next iteration uses two more comparisons and
finds A[4] in A[3..4].)

• k = 3 iterations (2 comparisons each) are first achieved for n′
3 = 3 ·n′

2− 1 = 14.
Maximum number of comparisons happens if we search A[9] in A[1; 14].

We get the following sequence: n′
1 = 2, n′

k+1 = 3n′
k − 1 for all k ≥ 1. The first

members look like this:

2, 5, 14, 41, 122, 365, 1094, . . .

We can also express this sequence by a closed formula:

n′
k = 1 +

(
1 + 3 + 32 + . . .+ 3k−1

)
= 1 +

3k + 1

2
. (1)

Note. If your ternary search algorithm does different rounding and splits the interval
in slightly different places m1 and m2, your worst case could look different. The
important part is that it is approximately a geometric progression with common
ratio 3.

(c) How many comparisons does this algorithm need in the worst case?

For any given list length n, express the k from the worst-case equation (1). We get
at least k iterations where

k = ⌈log3(2(n− 1))⌉+ 1.

Each iteration uses at most two comparisons, so the total number of comparisons is

2⌈log3(2(n− 1))⌉+ 2.

3. For each function f(n) defined below, find the optimal g(n) such that f(n) is O(g(n)),
and find C, n0, such that |f(n)| < C · |g(n)| as long as n > n0.

3

(a) f(n) = 3n4 + log2(n
8)

Can take g(n) = n4, C = 11, n0 = 1.

(b) f(n) =
n∑

k=1

(k3 + k)

Can take g(n) = n4, C = 2, n0 = 1.

(c) f(n) = (n+ 2) log2(n
2 + 1) + log2(n

3 + 1)

Can take g(n) = n log n, C = 8, n0 = 2.

(d) f(n) = n3 + sin(n7)

Can take g(n) = n3, C = 2, n0 = 1.

4. Assume that you have n coins; it is known that n−1 of these coins have equal weight, but
one of them is heavier than the others. The input to the algorithm is a list of n integer
variables representing the weights of the coins.
Note. An algorithm to find the maximum coin in a list of a1, a2, . . . , an is given in the textbook (Algorithm
1 on page 203); it needs n− 1 comparisons between individual numbers/coins.

You have a generalized comparison function that behaves like two-sided balance scales:

compare(list1, list2) =

−1, if S1 < S2,
0, if S1 = S2,
1, if S1 > S2,

where S1 =
∑

ai∈list1

ai, S2 =
∑

aj∈list2

aj.

Namely, you are allowed to compare any two groups of coins (of sizes 1, 2, . . . , ⌊n/2⌋ each);
and the scales will tell you, if first group is lighter, same or heavier than the other group.

(a) Describe an algorithm that shows how to find the heaviest coin among n coins, if all
the others have the same weight. You can write pseudocode or just explain precise
steps in English.

Step 1. If n = 1, we know that the only coin is the heaviest one.

Step 2. If n = 2, compare two coins using one weighing. Return the heaviest one.

Step 3. If n ≥ 3, divide all n coins into three lists of equal sizes (if n is not divisible
by 3, create nearly equal lists of sizes that differ by at most 1). There will always be
two lists of the same size. For example, 3 = 1 + 1 + 1; 4 = 1 + 1 + 2; 5 = 1 + 2 + 2;
6 = 2 + 2 + 2.

Step 4. Take two lists of equal sizes list1, list2 with |list1| = |list2|. The third group
is G3 (could have one more or one less coin than the other two lists). Compare list1
and list2 on scales.

Step 5. If compare(list1, list2) = −1, the heaviest coin is in list2.
If compare(list1, list2) = 1, the heaviest coin is in list1.

4

If compare(list1, list2) = 0, the heaviest coin is in list3.
In any of these three cases repeat the steps 1–5 again, but replace the original list
with one of the three sublists.

(b) Find the times you call “compare(list1, list2)”. Express the number of calls as a
function of n (the worst-case estimate).

Given the number of coins n, denote by an the number of comparisons before we
find the heaviest coin. The sequence an looks like this:

a1 = 0, a2 = 1, a3 = 1, a4 = 2, a5 = 2, a6 = 2, a7 = 2, a8 = 2, a9 = 2, a10 = 3,

The closed formula for the n-th member is this:

an = ⌈log3 n⌉ .

(c) Show that you used as few calls to “compare(list1, list2)” as possible.

Claim. It is not possible to find the heaviest coin with less than ⌈log3 n⌉ comparisons
(which the algorithm in (a) ensures).
To prove this, note that there are n different ways how the heaviest coin can be
located in a list of n coins (it can be the 1st coin, the 2nd coin, and so on). Every
comparison generates one of three possible outcomes (the scales can return values
+1, 0 or −1). The number of comparisons k should be such that 3k ≥ n (otherwise
there are two possible locations for the heaviest coin that are not distinguishable).
Take the logarithm of the both sides:

k ≥ log3 n → k ≥ ⌈log3 n⌉ .

The first inequality implies the other one, because k must be an integer number. So
the algorithm in (a) which uses exactly ⌈log3 n⌉ is optimal and cannot be improved
(it is impossible to do it with less comparisons).

5. Complete the proofs in Coq. You may use the non-constructive classic and NNPP axioms
if needed, but try to minimize their use. Submit your file as plain-text hw5_question5.v.

Full answer is available in the course Webpage under Discrete 2021: Assignments. See
https://bit.ly/3aipOmx.

Section Predicate_Logic_Examples.

(* A is a nonempty set (containing element 'something' *)
Variables A : Set.
Variables something: A.
(* Assume that P,Q are 1-argument predicates defined on A *)

5

https://bit.ly/3aipOmx

Variables P Q : A->Prop.

(* Can distribute 'exists' quantifier over a disjunction *)
Lemma sample5_1:

(exists (y:A), (P y)) \/ (exists (y:A), (Q y)) <->
exists (x:A), (P x) \/ (Q x).

Proof.
(* Insert a proof; then replace 'Admitted' by 'Qed' *)
Admitted.

(* A variant of De Morgans law *)
Lemma sample5_2:

(exists (x:A), ~~(P x)) <-> ~(forall (y:A), ~(P y)).
Proof.

Admitted.

(* If (P x) always implies (Q x), then the existence
of some (P x0) leads to existence of some (Q x1) *)

Lemma sample5_3:
(forall (x:A), P x -> Q x) ->

((exists (x:A), (P x)) -> exists (x:A), (Q x)).
Proof.

Admitted.

(* If P being true sometimes implies that also Q is true sometimes,
then there is some x0 for which (P x) implies (Q x) *)

Lemma sample5_4: ((exists (x:A), (P x)) -> (exists (x:A), (Q x))) ->
(exists (x:A), ((P x) -> (Q x))).

Proof.
Admitted.

(* If P(x) always implies Q(x), and P(x) is always true,
then Q(x) is always true. *)

Lemma sample5_5: (forall (x:A), ((P x) -> (Q x))) ->
((forall (x:A), (P x)) -> forall (x:A), (Q x)).

Proof.
Admitted.

End Predicate_Logic_Examples.

6

