
Homework 6
Discrete Structures

Due Tuesday, February 16, 2021
*Submit each question separately in .pdf format (except question 5)*

1. Let a, b ∈ Z and d ∈ N. Suppose that d | a and d | b, and that there exist x, y ∈ Z with
ax+ by = d.

(a) Use the definition of the gcd to prove that gcd(a, b) | d.
The definition of gcd says that e = gcd(a, b) if e is the largest integer such that e | a
and e | b. Since e | a, we also have e | ax, and similarly since e | b, we also have
e | by. Hence e | (ax+ by), or gcd(a, b) | d.

(b) Prove that gcd(a, b) = d

Since gcd(a, b) | d, it follows that gcd(a, b) 6 d. But since d | a an d | b, and e is
largest among such numbers, it must be that d = e.

2. (a) Find the remainder when 7633705 + 202175 is divided by 37.
Hint: Use Fermat’s little theorem.
Note that 7633 ≡ 11 (mod 37) and 2021 ≡ 23 (mod 37). Since 37 is prime, Fermat’s
little theorem gives us that 1136 ≡ 1 (mod 37) and 2336 ≡ 1 (mod 37). Hence

7633705 + 202175 ≡ (1136)19 · 1121 + (2336)2 · 233 (mod 37)

≡ 1121 + 233 (mod 37)

≡ 30 (mod 37).

This is quite an unpleasant number. The only practical solution is to use a calculator.

However, if instead of 705 we had 685 = 36 · 19 + 1 and instead of 75 we had
73 = 36 · 2 + 1, then the answer would be 34 (mod 37) without a calculator.

(b) Solve the linear congruence 77x ≡ 119 (mod 840).
We notice that gcd(77, 840) = 7, and that 119/7 = 17. Hence the congruence
77x ≡ 119 (mod 840) is equivalent to the congruence 11x ≡ 17 (mod 120). By trial
and error, we find the answer to be 67.

3. (a) Solve the system of linear congruences – find (x, y) ∈ {0, 1, . . . , 10} × {0, 1, . . . , 10}
satisfying both conditions: {

5x+ 4y ≡ 7 (mod 11)
7x+ y ≡ 6 (mod 11)

Answer: (x, y) = (6, 8).
Multiply both sides of the latter congruence by 4 (4·7 = 28 becomes 6; also 4·6 = 24
becomes 2 (replace large numbers by remainders (mod 11)):{

5x+ 4y ≡ 7 (mod 11)
6x+ 4y ≡ 2 (mod 11)
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Subtract the first equation from the last:

x ≡ −5 ≡ 6 (mod 11).

Now plug this value into the congruence 7x+ y ≡ 6 (mod 11). We get

y ≡ 6− 7x ≡ 6− 7 · 6 ≡ 6− 42 ≡ 6− 42 + 44 = 8 (mod 11).

So the solution is x ≡ 6, y ≡ 8 (mod 11).

(b) Consider the following system of linear congruences:{
a11 · x+ a12 · y ≡ b1 (mod 11),
a21 · x+ a22 · y ≡ b2 (mod 11).

(1)

Prove or disprove the following statement: The system (1) has a unique solution
(x, y) if and only if the expression a11 · a22 − a12 · a21 ̸≡ 0 (mod 11).

The “if and only if” statement is correct; we prove it in both directions.

Part 1. Assume that

∆ = det
(

a11 a12
a21 a22

)
= a11 · a22 − a12 · a21 ̸≡ 0 (mod 11).

This expression ∆ is called the determinant of the the 2 × 2 matrix. To show the
solution of the system, multiply the first equation by a21, the second equation by
a11: {

a21 · a11 · x+ a21 · a12 · y ≡ a21 · b1 (mod 11),
a11 · a21 · x+ a11 · a22 · y ≡ a11 · b2 (mod 11).

Subtract the first equation from the second one:

(a11 · a21 − a21 · a11) · x+ (a11 · a22 − a21 · a12) · y ≡ a11 · b2 − a21 · b1 (mod 11).

Coefficients for variable x cancel out, and the y is actually multiplied by the deter-
minant ∆. We get this:

∆ · y ≡ a11 · b2 − a21 · b1 (mod 11). (2)

We assumed that ∆ is not congruent to 0 (mod 11); therefore there exists the inverse
∆−1; a number with property that ∆−1 · ∆ ≡ 1 (mod 11). Multiply both sides of
the latest equality by ∆−1 to get this:

∆−1 ·∆ · y ≡ ∆−1 · (a11 · b2 − a21 · b1) (mod 11).

y ≡ ∆−1 · (a11 · b2 − a21 · b1) (mod 11).

Now need to express variable x. We know that at least one of the two coefficients a11
or a21 is not 0 (otherwise the determinant ∆ is 0). Assume that a11 ̸≡ 0 (mod 11)
(the case with the 2nd equation is similar). Then we can also express x from the
1st equation (since y is already found).

x ≡ a−1
11 · (b1 − a12 · y) (mod 11).
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Part 1. Assume that

∆ = det
(

a11 a12
a21 a22

)
= a11 · a22 − a12 · a21 ≡ 0 (mod 11).

If the determinant ∆ is congruent to 0, we can rewrite (2):

∆ · y ≡ a11 · b2 − a21 · b1 (mod 11).

For ∆ ≡ 0 it simplifies as this:

0 ≡ a11 · b2 − a21 · b1 (mod 11).

There are two cases:
• If a11 · b2 − a21 · b1 ̸≡ 0. In this case both equations contradict each other and

the congruence system has no solutions at all.
• a11 · b2 − a21 · b1 ≡ 0. In this case we deal with just one congruence (and the

system has a different solution x, no matter what value y is selected.

4. (a) Find the smallest positive integer k such that 16k ≡ 1 (mod 41).

Answer: k = 5.
We can raise to powers (mod 41):

161 ≡ 16 (mod 41),
162 ≡ 10 (mod 41),
163 ≡ 37 (mod 41),
164 ≡ 18 (mod 41),
165 ≡ 1 (mod 41).

(b) Write the first ten digits of a hexadecimal fraction 0.h1h2h3 . . . that equals 1/41;
find the period of this fraction.

From the previous point we have 165 − 1 = 1048575 divisible by 41; the result of
division is 25575. Therefore we have

1

41
=

25575

1048575
= 25575 · 1

165 − 1
= 25575 ·

(
1

165
+

1

1610
+

1

1615
+

1

1620
+ . . .

)
.

The last equality follows from the formula of infinite geometric series.
The hexadecimal representation of the fraction in the parentheses is

1

1048575
= 0.000010000100001 . . .16 . (3)

Now convert the number 2557510 into hexadecimal notation by successively dividing
by 16:

25575 = 1598 · 16 + 7,
1598 = 99 · 16 + 14,
99 = 6 · 16 + 3,
6 = 0 · 16 + 6.
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Therefore 2557510 = 063E716. We now multiply this by (3) (i.e. divide by 1048575
to get exactly the fraction 1

41
). We get that

25575

1048575
=

1

41
= 0.063E7063E7063E7...16 = 0.(063E7)16.

BTW, this is the way how the fraction 1
41

is stored in a computer’s RAM. The infinite
hexadecimal/binary fraction is rounded to fit within a 4-byte or 8-byte register.

(c) For what positive integers k does there exist some a ∈ {1, . . . , 40} such that all
k numbers a1, . . . , ak give different remainders when divided by 41, and ak ≡ 1
(mod 41).
Little Fermat theorem ensures that for any a not divisible by 41, we have a40 ≡ 1
(mod 41), but this theorem does not guarantee that the power k = 40 is the first
one where ak ≡ 1 (mod 41).
With a little trial and error we find that b1 = 6 is a number for which all the 40
powers b11, . . . , b401 are different and only b401 ≡ 1 (mod 41). Such numbers (that give
all the possible congruence classes except 0) are called primitive roots modulo 41.
(See https://bit.ly/2OwgGSX, where there is a table of primitive roots; including
p = 41. For every prime number p there is at least one primitive root.)

Figure 1: All 40 remainders 6x are different, so 6 is a primitive root (mod 41)

Let us pick the following powers of 6 (modulo 41): b2 = 62 ≡ 36, b4 = 64 ≡ 25,
b5 = 65 ≡ 27, b8 = 68 ≡ 10, b10 = 610 ≡ 32, b20 = 620 ≡ 40, b40 = 640 ≡ 1. We
claim that they have all different periods (different values of k when bki ≡ 1). Let us
establish the periods:

b401 = 640 ≡ (61)40 ≡ 640 ≡ 1 (mod 41)
b202 = 3620 ≡ (62)20 ≡ 640 ≡ 1 (mod 41)
b104 = 2510 ≡ (64)10 ≡ 640 ≡ 1 (mod 41)
b85 = 278 ≡ (65)8 ≡ 640 ≡ 1 (mod 41)
b58 = 105 ≡ (68)5 ≡ 640 ≡ 1 (mod 41)
b410 = 324 ≡ (610)4 ≡ 640 ≡ 1 (mod 41)
b220 = 402 ≡ (620)2 ≡ 640 ≡ 1 (mod 41)
b140 = 14 ≡ (640)1 ≡ 640 ≡ 1 (mod 41)

These numbers b1, b2, b4, b5, b8, b10, b20, b40 have these periods (of lengths 40, 20, 10, 8, 5, 4, 2, 1
respectively). They cannot have shorter periods. If we assume that, say

bk2 = 36k ≡ 1, for some k < 20,

then we would get also 62k ≡ 1 (mod 41) for some power 2k < 40, but as we saw in
Figure 1, number 6 is the primitive root (its period is exactly 40).
Moreover, no number a can have a period that is not a divisor of 40, because other-
wise it would violate the Little Fermat theorem (we would have a40 ̸≡ 1 (mod 41)).
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5. Complete the proofs in Coq. You may use the non-constructive classic and NNPP axioms
if needed (and also various results from the library ZArith). Submit your file as plain-text
hw6_question5.v.

Full answer is available in the course Webpage under Discrete 2021: Assignments. See
https://bit.ly/3rq8K3V.

Require Import ZArith.
Require Import Znumtheory.

Section Homework6_Problems.

Open Scope Z_scope.

(* See Theorem1 (i), p.252 in the textbook *)
Lemma sample6_1: forall a b c:Z, (a | b) -> (a | c) -> (a | b+c).
Proof.

Admitted.

(* See Theorem1 (ii), p.252 in the textbook *)
Lemma sample6_2: forall a b c:Z, (a | b) -> (a | b*c).
Proof.

Admitted.

(* See Theorem1 (iii), p.252 in the textbook *)
Lemma sample6_3: forall a b c: Z, (a | b) -> (b | c) -> (a | c).
Proof.

Admitted.

(* See Theorem4, p.255 in the textbook *)
Lemma sample6_4: forall a b m: Z, (m <> 0) ->

((a mod m) = (b mod m) <-> (exists k:Z, a = b+k*m)).
Proof.

Admitted.

Lemma sample6_5 : forall a b c : Z, (a|b) \/ (a|c) -> (a| b*c).
Proof.

Admitted.

Close Scope Z_scope.

End Homework6_Problems.
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