Homework 6

Discrete Structures Due Tuesday, February 16, 2021

Submit each question separately in .pdf format (except question 5)

- 1. Let $a, b \in \mathbb{Z}$ and $d \in \mathbb{N}$. Suppose that $d \mid a$ and $d \mid b$, and that there exist $x, y \in \mathbb{Z}$ with ax + by = d.
 - (a) Use the definition of the gcd to prove that $gcd(a, b) \mid d$.
 - (b) Prove that gcd(a, b) = d
- 2. (a) Find the remainder when $7633^{705} + 2021^{75}$ is divided by 37. *Hint: Use Fermat's little theorem.*
 - (b) Solve the linear congruence $77x \equiv 119 \pmod{840}$.
- 3. (a) Solve the system of linear congruences find $(x, y) \in \{0, 1, ..., 10\} \times \{0, 1, ..., 10\}$ satisfying both conditions:

$$\begin{cases} 5x + 4y \equiv 7 \pmod{11} \\ 7x + y \equiv 6 \pmod{11} \end{cases}$$

(b) Consider the following system of linear congruences:

$$\begin{cases} a_{11} \cdot x + a_{12} \cdot y \equiv b_1 \pmod{11}, \\ a_{21} \cdot x + a_{22} \cdot y \equiv b_2 \pmod{11}. \end{cases}$$
(1)

Prove or disprove the following statement: The system (1) has a unique solution (x, y) if and only if the expression $a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \not\equiv 0 \pmod{11}$.

- 4. (a) Find the smallest positive integer k such that $16^k \equiv 1 \pmod{41}$.
 - (b) Write the first ten digits of a hexadecimal fraction $0.h_1h_2h_3...$ that equals 1/41; find the period of this fraction.
 - (c) For what positive integers k does there exist some $a \in \{1, \ldots, 40\}$ such that all k numbers a^1, \ldots, a^k give different remainders when divided by 41, and $a^k \equiv 1 \pmod{41}$.
- 5. Complete the proofs in Coq. You may use the non-constructive classic and NNPP axioms if needed (and also various results from the library ZArith). Submit your file as plain-text hw6_question5.v.

```
Require Import ZArith.
Require Import Znumtheory.
Section Homework6_Problems.
Open Scope Z_scope.
(* See Theorem1 (i), p.252 in the textbook *)
Lemma sample6_1: forall a b c:Z, (a | b) -> (a | c) -> (a | b+c).
Proof.
```

```
Admitted.
(* See Theorem1 (ii), p.252 in the textbook *)
Lemma sample6_2: forall a b c:Z, (a | b) \rightarrow (a | b*c).
Proof.
 Admitted.
(* See Theorem1 (iii), p.252 in the textbook *)
Lemma sample6_3: forall a b c: Z, (a | b) -> (b | c) -> (a | c).
Proof.
  Admitted.
(* See Theorem4, p.255 in the textbook *)
Lemma sample6_4: forall a b m: Z, (m \langle \rangle 0) ->
    ((a \mod m) = (b \mod m) \iff (exists k:Z, a = b+k*m)).
Proof.
 Admitted.
Lemma sample6_5 : forall a b c : Z, (a|b) \setminus (a|c) -> (a| b*c).
Proof.
 Admitted.
Close Scope Z_scope.
End Homework6_Problems.
```