Homework 7

Discrete Structures Due Tuesday, February 23, 2021 *Submit each question separately in .pdf format*

- 1. Let $a_1 = 1$, and for each $n \ge 1$, let $a_{n+1} = \sqrt{3 + 2a_n}$. Using induction, prove that for every $n \in \mathbf{N}$, the inequalities $0 \le a_n \le a_{n+1} \le 3$ hold.
- 2. Let $a_1 = 3$, $a_2 = \frac{3}{2}$, and for each $n \ge 3$, let $a_n = \frac{1}{2}(a_{n-1} + a_{n-2})$. Using strong induction, prove that for every $n \in \mathbf{N}$, the equality $a_n = 2 + \left(\frac{-1}{2}\right)^{n-1}$ holds.
- 3. Let $r \in (0, 1)$ be an irrational number. Using induction, construct a sequence of nested closed intervals $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ such that for all $n \in \mathbf{N}$,
 - $r \in I_n$,
 - $I_n \subseteq [0,1]$, and
 - the length of I_n is $\frac{1}{2^n}$.
- 4. Find the greatest common divisor for the following set of numbers:

$$\left\{7^{n+2} + 8^{2n+1} \,|\, n \in \mathbf{Z}^+\right\}.$$

Prove by induction that the number you found actually divides every element in this infinite set.