Homework 9

Discrete Structures Due Tuesday, March 9, 2021

Submit each question separately as .pdf (Except Coq which is hw7question5.v)

- 1. Let $\mathbf{R}[x]_2 = \{ax^2 + bx + c : a, b, c \in \mathbf{R}, a \neq 0\}$ be the set of all quadratic polynomials with real coefficients. Let R be the relation between $p, q \in \mathbf{R}[x]_2$, with pRq iff q can be obtained by multiplying p by a real number.
 - (a) Is R reflexive? Is R symmetric? Is R antisymmetric? Is R transitive?
 - (b) Is R an equivalence relation? If it is, build a subset $S \subseteq \mathbf{R}[x]_2$ such that S contains exactly one representative from each equivalence class.

Note. In many math texts (also in this course) \mathbf{R} (bold) denotes the set of real numbers. Thus $\mathbf{R}[x]$ is the set of all polynomials with real coefficients, but $\mathbf{R}[x]_2$ are polynomials of degree 2. On the other hand, R (regular font) denotes a relation. Try to distinguish these symbols in your handwritten solutions.

- 2. Let $S = \{A, B, C\}$.
 - (a) Write all the partitions of S.
 - (b) Let ρ be the relation on partitions of S, defined by $P_1\rho P_2$ iff P_2 can be obtained from P_1 by splitting a single class of P_1 into two non-empty subclasses. Represent the relation ρ as a directed graph, labeling the vertices as circles with their partitions written inside.
 - (c) Let R be the transitive closure of ρ . How many elements does R contain?
 - (d) Is R a partial order? Is it a total order?
- 3. Let R and S be two relations. Relation R describes friends:

R.ID	R.Name	R.Lastname
101	Ann	Smith
102	Robert	Jones
103	Jane	Doe

Relation S describes contact info:

S.ID	S.Type	S.Value
101	Phone	123-4567
101	Email	ann.smith@rbs.lv
102	Phone	456-7890
104	Email	maria.brown@rbs.lv

(a) Compute the *inner join* of both relations defined by this equality:

$$R \bowtie S = \pi_{R.ID,R.Name,R.Lastname,S.Type,S.Value} \left(\sigma_{R.ID=S.ID}(R \times S) \right).$$
(1)

(b) Compute the following relational algebra expression:

$$(R \bowtie S) = (R \bowtie S) \cup$$
$$((R - \pi_{R.ID,R.Name,R.Lastname}(R \bowtie S)) \times \{(S.Type : null, S.Value : null)\}).$$

- (c) Compute the *full outer join* of both relations: Include data from both tables where **R.ID** matches **S.ID**, also include those friends who do not have contact info (and also the contact info without a friend). Fill in the missing fields with null values.
- 4. Let R be a binary relation on $S = \{v_1, v_2, v_3, v_4\}$ defined by this matrix:

$$M_R = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$
 (2)

- (a) Show how the Warshall algorithm (Rosen2019, p.637) is run on this matrix to compute the transitive closure R^t. Draw the matrix after every execution of the outer loop (for k := 1 to n). Highlight those values that switch from 0 to 1. You will get 4 matrices: M_R⁽¹⁾, M_R⁽²⁾, M_R⁽³⁾, M_R⁽⁴⁾ the successive results from the Warshall algorithm as k = 1, 2, 3, 4. The last matrix M_R⁽⁴⁾ represents the transitive closure R^t.
- (b) Prove or disprove the following statement: "Entry $m_{ij} = 1$ becomes 1 in the k-th iteration of the outer loop $(m_{ij} = 1 \text{ in } M_R^{(k)}, \text{ yet } m_{ij} = 0 \text{ in earlier matrices})$ iff the shortest path from v_i to v_j contains exactly k steps." Is it true for the relation in (2)? Is it true for any binary relation?
- 5. Complete Homework Exercise 7, Part 2. Its description is given in a separate file, as the initial Coq file hw7question5.v.