
Homework 10
Discrete Structures

Due Tuesday, March 16, 2021
*Submit each question separately as .pdf*

1. Let Gi = (V,E) be an directed graph for i = 1, 2, and fix n ∈ N. How many functions
f : V → {1, . . . , n} satisfying f(u) ̸= f(v) whenever there is a path from u to v are there
for each of the following graphs?

G1 =

a

b

c

d

e

f

g

h

G2 =

a

b

c

de

f

g

h

i

jk

l

For G1 and the vertex a, there are n choices, since there are no paths that end at a (we
do not consider the empty path starting and ending at a as a path). Similarly:

• for b there are n− 1 choices (a path starting at a ends at b)
• for c there are n− 2 choices (paths starting at a, b end at c)
• for f there are n choices (no paths end at f)
• for g there are n− 1 choices (a path starting at f ends at g)
• for h there are n− 2 choices (paths starting at f, g end at h)
• for d there are n− 6 choices (paths starting at a, b, c, f, g, h end at d)
• for e there are n− 7 choices (paths starting at a, b, c, d, f, g, h end at e)

Hence the total number of functions is:

• 0 if n = 1, 2, 3, 4, 5, 6, 7

• n2(n− 1)2(n− 2)2(n− 6)(n− 7) if n > 8

For G2 we follow a similar pattern and find that:

• for a, h, f, c there are n choices
• for i, l, k, j there are n− 1 choices
• for e, d there are n− 2 choices
• for g, b there are n− 5 choices

Hence the total number of functions is:

• 0 if n = 1, 2, 3, 4, 5

• n4(n− 1)4(n− 2)2(n− 5)2 if n > 6
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2. Let n ∈ N. This questions is about strings of length n of the letters a, b, c.

(a) How many strings contain exactly 10 letters a?
The number of ways to choose 10 spots from n spots is

(
n
10

)
. In each of these ways,

there are n− 10 positions left to fill, which can be either the letter b or the letter c,
meaning there are 2n−10 possibilities. Hence the total number of string that contain
exactly 10 letters a is 0 if n < 10, and otherwise(

n

10

)
· 2n−10 =

n! · 2n

10! · (n− 10)! · 210
.

(b) How many strings
• contain exactly one letter a, or
• contain exactly one substring bbbb and no other letters b?

The number of strings that contain exactly one letter a is
(
n
1

)
·2n−1 = n ·2n−1, going

by the answer from part (a) above.
The number of strings that contain exactly one occurence of the string bbbb and no
other letters b is (n− 3) · 2n−4, since there are n− 3 ways to have the string bbbb,
and in each of these there are 2n−4 empty spots left to fill with either a or c:

Finally, we must consider how many string have both of these cases. After choosing
one of the n−3 ways for the string bbbb, we must choose one of the remaining n−4
positions for the letter a. There are

(
n−4
1

)
= n − 4 such options. Afterwards, the

only option for the other n− 5 positions is the letter c, so we have nothing more to
choose. Hence the number of ways to have both of these cases is (n− 3)(n− 4).
Putting it all together, the number of strings that contain exactly one letter a or
one substring bbbb and no other letters b is 0 for n < 4, and otherwise(

strings with exactly
one letter a

)
+

strings with exactly one
substring bbbb and no

other letters b

−
(

strings where both of
these things happen

)
= n · 2n−1 + (n− 3) · 2n−4 − (n− 3) · (n− 4).
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(c) For n > 10, how many strings contain exactly n−5 consecutive letters a and contain
no letters c?
Similarly to part (b) above, there are 6 = n − (n − 5) + 1 ways to have n − 5
consecutive letters a in a strong of length n. There must be no letters a before or
after this block (else the block will be longer that n− 5), but otherwise we are free
to choose letters a or b, but not c. For 4 of the ways the string of n− 5 consecutive
letters a has an empty position before and after it, otheriwse just before or after:

Hence the number of strings that contain exactly n − 5 consecutive letters a and
contain no letters c is 2 · 24 + 4 · 23 = 64.

3. Let Bn be the set of all compound propositions f(p1, . . . , pn) with n propositional vari-
ables. (Compound propositions are considered the same iff they are logically equivalent.)

(a) How many compound propositions f from Bn satisfy this tautology:

f(p1, . . . , pn) → p1 ∨ . . . ∨ pn. (1)

Answer. There are 22
n−1 such compound propositions (2 to the power 2n − 1).

If we drop any requirements about tautologies, n-argument Boolean function has
a truth table with 2n rows (representing all 2n combinations of True/False for
propositional variables p1, p2, . . . , pn).
Because of tautology (1) we should analyze what truth values make this formula
true (for any combination of variables p1, . . . , pn). If their disjunction (p1 ∨ . . .∨ pn)
evaluates to True, then we do not need to worry about the value of f(p1, . . . , pn),
because the implication will be true no matter what.
On the other hand, if all p1, . . . , pn evaluate to False (and also their disjunction is
false), then f(p1, . . . , pn) must also be False – otherwise the implication (1) becomes
false and it is no longer a tautology.
Consequently, we can pick any values for f(p1, . . . , pn) in its truth table with a single
exception. We must have

f(False, False, . . . , False︸ ︷︷ ︸
All n values False

) = False.
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Therefore we can freely choose only 2n − 1 values in the truth table, so the count of
such functions is 22

n−1.

(b) How many compound propositions f from Bn satisfy this tautology:

f(p1, . . . , pn) → p1 ⊕ . . .⊕ pn. (2)

Answer. There are 22
n−1 such compound propositions (2 to the power 2n−1)

Here the answer is obtained in a similar way as in the previous sample. But unlike
the earlier tautology, in (2) there is exactly half of all 2n rows in the truth table where
the subexpression p1 ⊕ . . . ⊕ pn turns False, so the Boolean function f(p1, . . . , pn)
must be False as well.

f(True, True, False, . . . , False︸ ︷︷ ︸
Any even number of n values True

) = False.

Therefore, only 2n−1 truth values can be picked in any way we like. Assigning arbi-
trary True/False value in 2n−1 slots gives us 22

n−1 possibilities.

4. Someone selected k points on the plane: A1(x1, y1), A2(x2, y2), . . ., Ak(xk, yk). All of
them have both integer coordinates, no three points are on the same line.

(a) How many triangles can be created from these points?

(
k
3

)
= k!

(k−3)!3!
describes in how many ways one can pick unordered set of 3 vertices

out of k vertices. And every set of 3 vertices makes a new triangle, since no three
points are on the same line.

(b) What is the smallest value k for which at least one of the line segments AiAj will
have its midpoint with both integer coordinates?

Answer. For k = 5 points at least one midpoint of some segment AiAj will have
both integer coordinates.
First we check that for k = 4 the statement is not true. If we pick A1(0; 0), A2(1; 0),
A3(1; 1), A4(0; 1) to be the vertices of a unit square, then all the midpoints of
segments AiAj will have at least one non-integer coordinate.
If k = 5, then consider the following 4 categories (S1, S2, S3, S4) of points with integer
coordinates:

S1 := {(xi, yi) | (xi ≡ 0 (mod 2)) ∧ (yi ≡ 0 (mod 2))}
S2 := {(xi, yi) | (xi ≡ 0 (mod 2)) ∧ (yi ≡ 1 (mod 2))}
S3 := {(xi, yi) | (xi ≡ 1 (mod 2)) ∧ (yi ≡ 0 (mod 2))}
S4 := {(xi, yi) | (xi ≡ 1 (mod 2)) ∧ (yi ≡ 1 (mod 2))}

Intuitively, any point is either (even,even), or (even, odd), or (odd, even), or (odd,odd).
As soon as you have k = 5 points at least two will be in the same category (S1, S2,
S3, or S4); this happens because of the Pigeonhole principle.
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(c) What is the smallest value k for which at least one of the triangles will have its
centroid (the point where all its medians meet) in a point with both integer coordi-
nates?

Answer. For k = 9 points at least one triangle AiAjAk will have its centroid in a
point with both integer coordinates.
First, notice that a triangle ABC, where points have coordinates A(xA, yA), B(xB, yB)
and C(xC , yC) has the centroid (intersection of its medians in the following point:(

xA + xB + xC

3
,
yA + yB + yC

3
.

)
(3)

The formula to find centroid coordinates is easy to find with a Web search (https:
//bit.ly/3eVlhcl), one can also derive it independently (by knowing that the
centroid splits all medians in ratio 2 : 1).

Figure 1: Classifying points into nine categories.

For this reason, having both coordinate sums simultaneously divisible by 3 is the
only relevant condition. We classiify all plane points with integer coordinates into
9 categories (depending on their remainders when divided by 3). For example, any
of the 8 points in Figure 2 (after we compute the remainders for their x and y
coordinates) maps to some little circle in Figure 1.
Since we have to find the least number of points that guarantee a centroid with all
integer coordinates, our proof will consist of two parts:
(1) Counterexample for k = 8. We show that it is possible to select k = 8 points
so that none of the C3

8 = 56 triangles that can be made out of these points has its
centroid with both integer coordinates.
(2) General proof for k = 9. We show that no matter how you locate k = 9 points,
there will be a triangle having centroid in integer points.

(1) Counterexample for k = 8. Consider figure 2. In that image 8 points are
selected, no three points are on the same line. As shown in 1, their coordinates
have remainders 0 or 1 when dividied by 3 (there are two points in each of the four
possible categories). No matter how we pick 3 points out of these 8, they cannot
be all from the same category. Either x or y coordinates will not be all congruent
modulo 3. So, their sum can be either 0+ 0+1 or 0+ 1+1 – in either case it is not
divisible by 3.
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Figure 2: Plane with k = 8 points selected.

(2) General proof for k = 9. We reason by contradiction. Imagine that we
have somehow selected 9 points so that there is no triangle with an integer centroid.
Then all 9 points can be placed on a 3× 3 grid. There are some combinations that
we must avoid, because they would immediately lead to an integer centroid; see
Figure 3. They include four cases:
Condition (A) Three points in the same category,
Condition (B) Three points in different slots of the same row,
Condition (C) Three points in different slots of the same column,
Condition (D) Three points on pairwise different rows and columns.

Figure 3: Configurations that create integer centroids.

Since we have 9 points (and because of Condition (A)) no three points can be in
the same category, by the Pigeonhole principle at least 5 categories should contain
some points (since ⌊9/4⌋ = 3; using just 4 categories would lead to 3 points ending
up in the same category).
Because of Condition (B) we cannot have three non-empty categories on the same
row. For that reason, the five non-empty categories should be distributed in rows
like this: 2 + 2 + 1 (or, perhaps 2 + 1 + 2 or 1 + 2 + 2). Let us assume that the
top two rows contain two non-empty categories each (other cases are similar). See
Figure 4 – a cell is shaded, if there is at least one point in this category. We have two
possibilities: the first two rows could be filled in identically (picture to the left), or,
perhaps, they can partially overlap (picture to the right). In either case we cannot
find another, the 5th category to fill in, because it will violate either the Condition
(C) or the Condition (D) (see Figure 3).
This is a contradiction, therefore it is not possible to have 9 points A1, . . . , A9 such
that there is no triangle with its centroid with both integer coordinates. Since we
had a counterexample for k = 8, the value k = 9 is indeed the smallest value.

5. Because of epidemiological safety measures only one robot is allowed to visit the public
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Figure 4: How to fill in the first two rows (two non-empty categories each).

library. Every day the robot arrives to a shelf with 10 volumes of an encyclopedia and
reorders them so that volume from the slot #1 goes to the slot n1, the volume from #2
goes to the slot n2, and so on. (n1, . . . , n10 are different integers between 1 and 10; they
are the same every day.) The robot observes that after T days the volumes return to the
original order.

(a) What is the value of T , if we define nk = (6 · k mod 11) for k = 1, . . . , 10?

We have T = 10. Indeed, consider one book (say, book #1). Every time it travels
from the location k to the location (6 · k mod 11), i.e. it moves to the location that
is congruent to 6 · k (mod 11). We are now ready to write the trajectory for the
book #1:

1 → 6 → 3 → 7 → 9 → 10 → 5 → 8 → 4 → 2 → 1.

The book visited all 10 places before returning back to its original location.
Because of the Little Fermat theorem any other book will return to its original value
as well, since 610 ≡ 1 (mod 11).

(b) Somebody modified robot’s software in such a way that T > 10 (the books need
more than 10 days to return to their initial state). Provide some example of the
values nk when this happens and find the corresponding T .

We can have T = 30. Let us consider how to construct it. We divide the books
into three groups: {1, 2, 3, 4, 5}, {6, 7, 8}, {9, 10}. In every group the robot reorders
books in a cycle. Here is the permutation that ensures these cycles:(

1 2 3 4 5 6 7 8 9 10
2 3 4 5 1 7 8 6 10 9

)
.

After every 5 steps the book #1 will return to its original position.
After every 3 steps the book #6 will return to its original position.
After every 2 steps the book #9 will return to its original position.
So, if the step number is divisible by 30, all the three cycles will return to their
original positions. It will not return earlier, because no number T < 30 is divisible
by all 5, 3, and 2.
By picking different group sizes one can get other periods longer than 10. For ex-
ample, 3 · 4 · 1 · 1 · 1 = 12, 3 · 5 · 1 · 1 = 15, 4 · 5 · 1 = 20, or 3 · 7 = 21.
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