
Homework 12
Discrete Structures

Due Tuesday, March 30, 2021
*Submit each question separately as .pdf*

1. This question is about strings of the letters a and b. A “valid” string ℓ1 · · · ℓn of length
n is a string for which ℓ1 · · · ℓk contains at least as many letters a as letters b, for every
k = 1, . . . , n.

(a) Give all the valid strings of length 1,2,3,4.
The strings are:

a aa aaa aaaa
ab aab aaab

aba aaba
aabb
abaa

(b) You randomly choose a string of the letters a and b, of length between 1 and 4
inclusive, and the string is valid. What is the probability that the string you chose
has length 3?
Bayes theorem

(c) Find the recurrence relation for valid strings of length n.
Hint: Split up your relation into cases when n is even or odd.

2. Consider the recurrence relation an = 3ean−1 − 2e2an−2 − F (n), with

F (n) = (e− 1)(e− 2)2n−2, a0 = π, a1 =
3π

2
.

(a) What is the associated homogeneous recurrence relation and what are the roots of
its characteristic equation?

(b) Find a solution to the associated homogeneous recurrence relation.
(c) Find a particular solution to the recurrence relation.

Using Theorem 6 from page 549, a particular solution is an = p02
n. Placing this

into the recurrence relation, we get

p02
n = 3ep02

n−1 − 2e2p02
n−2 − (e− 1)(e− 2)2n−2

p0(2
n − 3e2n−1 + 2e22n−2) = −(e− 1)(e− 2)2n−2

p02
n−1(2− 3e+ e2) = −(e− 1)(e− 2)2n−2

p02
n−1(2− e)(1− e) = −(e− 1)(e− 2)2n−2

p0 = −2n−2

2n−1

p0 = −1

2
.

Hence a particular solution is an = −2n−1.
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(d) Find the general solution to the recurrence relation.

3. In the game of Hanoi towers the goal is to move n different disks from Peg 1 to Peg 3
(using also Peg 2 when necessary) moving one disk at a time and never placing a larger
disk on top of a smaller disk. Assume that the disks have costs associated with moving
(moving the smallest disk once costs 1 unit, moves of the next disks cost 2, 3, . . . , n units
respectively). Let Gn be the total cost to move all disks from Peg 1 to Peg 3.

(a) Define Gn as a recurrent sequence.

G1 = 1; Gn = 2Gn−1 + n.

To verify these formulas, note that moving just one small disk costs 1 unit (G1 = 1).
Furthermore, moving n disks (weights 1, . . . , n) from Peg 1 to Peg 3 can be expressed
by these three actions:

• Move the smaller set of disks (weights 1, . . . , n− 1) from Peg 1 to Peg 2. (Cost
is Gn−1.)

• Move the largest disk (weight n) from Peg 1 to Peg 2. (Cost is n.)
• Move the smaller set of disks (weights 1, . . . , n− 1) from Peg 2 to Peg 3. (Cost

is once again Gn−1.)
Therefore Gn = Gn−1 + n+Gn−1 = 2Gn−1 + n.

(b) Find a closed formula for this sequence.

We prove by induction that Gn = 2n+1 − (n+ 2).
Base Case: n = 1.
By recursive formula G1 = 1. And the closed expression is 22 − 3 = 4− 3 = 1.
Inductive Step: n = k implies n = k + 1.
Inductive hypothesis: Assume Gk = 2k+1 − (k + 2).
Now we should prove that Gk+1 = 2k+2 − (k + 3).
Rewrite Gk+1 using recurrent formula and substitute the inductive hypothesis:

Gk+1 = 2Gk +(k+1) = 2
(
2k+1 − (k + 2)

)
+(k+1) = 2 · 2k+1− 2 · (k+2)+ (k+1).

The latter expression can be simplified as 2k+2− (2k+4)+ (k+1) = 2k+2− (k+3).
This is exactly the equality we had to prove.

4. Define a recurrent sequence f(n) = 3f(n/3) + 3n, f(1) = 1.

(a) Use Master theorem to find a function g(n) such that f(n) is in O(g(n)).

Master theorem (Rosen2019, p.558) can solve all recurrences in the following form:

f(n) = af(n/b) + cnd,

where the initial conditions (the value of f(1)) can be arbitrary, and a, b, c, d are
numbers (in particular, a ≥ 1, b ≥ 2, c > 0, d ≥ 0; also b is an integer, since
divide-and-conquer recurrences subdivide the problem into an integer number of
parts).
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In our case, a = 3, b = 3, c = 3, d = 1.
Therefore, we use the 2nd case in the Master theorem (when a = bd), and conclude
that f(n) is in O(nd log n) or by replacing d = 1 we get O(n log n).
So the function g(n) = n log n.
This recurrence is very similar to the Merge Sort. In fact, we could get exactly
this recurrence when estimating the time complexity for algorithms that are doing
a variant of Merge Sort (subdividing the array in 3 equal parts every time).

(b) Find f(310).

We can rewrite the recurrence 10 times:

f(310) = 3f(39) + 3 · 310 =
= 3(3f(38) + 3 · 39) + 3 · 310 =
= 32f(38) + 311 + 311 =

= 32(3f(37) + 3 · 38) + 311 + 311 =

= 33f(37) + 311 + 311 + 311 =

= . . . =

= 310f(30) + 311 + 311 + . . .+ 311︸ ︷︷ ︸
10 times

=

= 310 · 1 + 10 · 311 = (1 + 3 · 10) · 310 = 31 · 310 =
= 31 · 59049 = 1830519.

One can prove by induction that f(3k) = (1 + 3k)3k. So the functions in Big-
O-Notation class O(n log n) can have integer values, if the function argument has
special form such as 3k.

5. There are two identical decks of 2N playing cards. Each deck is shuffled and laid on the
table in a single line. Event E3;2N means that there are exactly three matches between
the two lines of cards.

(a) Prove that the probability p(E3;2N) is expressed by the formula:

p(E3;2N) =
1

3!

(
1

0!
− 1

1!
+

1

2!
− . . .+

1

(2N − 4)!
− 1

(2N − 3)!

)
=

1

3!

2N−3∑
k=0

(−1)k
1

k!
.

If we have two decks of 2N cards each, then formally we could build ((2N)!)2 se-
quences of these cards – each deck can be laid in (2N)! different ways. Let us assume
that we only care about the pairs (card on the top line vs. the card on the bottom
line), but the order of the pairs does not matter. For the sake of simplicity we
assume that the top line is ordered in some order.
See Figure 1 on how the pairs can be laid out in a “canonical order” preserving all
matches. After reordering we see that there are just (2N)! ways to create pairs of
playing cards between two decks. Let us count how many of these (2N)! ways create
exactly 3 matches.
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Figure 1: Matches preserved after reordering pairs.

First, note that there are
(
2N

3

)
ways to pick the three matching cards. All the

other (2N − 3) cards make a derangement, i.e. permutation where no element stays
in its previous location (as it would increase the total number of matches, but we
need exactly three matches).
By Theorem 2 (Rosen2019, p.589) the number of derangements can be expressed by
the following formula:

D2N−3 = (2N − 3)!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)2N−3 1

(2N − 3)!

)
.

The last term has minus sign, since (−1)2N−3 = −1. We can now multiply the
number of matches (3 out of 2N) with the number of derangements on the remaining
2N − 3 elements:

#Eventswith 3 matches =

(
2N

3

)
· (2N − 3)!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · · − 1

(2N − 3)!

)
=

=
(2N)!

(2N − 3)!3!
· (2N − 3)!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · · − 1

(2N − 3)!

)
=

(2N)!

3!
·
(
1− 1

1!
+

1

2!
− 1

3!
+ · · · − 1

(2N − 3)!

)
.

Since all (2N)! permutations are equally likely, divide this expression by (2N)! to
get the probability:

p(E3;2N) =
#Eventswith 3 matches

(2N)!
=

1

3!

(
1

0!
− 1

1!
+

1

2!
− . . .+

1

(2N − 4)!
− 1

(2N − 3)!

)
.

This is exactly the formula we had to prove.

(b) Find the limit: lim
N→∞

p(E3;2N).

(A match means the same card in the same position. For example, if N = 4, then the
following two lines of 8 cards match for these three cards: D, C, E.)

F D A C B H G E
A D G C H B F E

We will prove that
lim

N→∞
p(E3;2N) =

1

6
e−1 ≈ 0.06131324.

Namely, the chance to have exactly 3 matches is about 6.13% if the number of cards 2N
is large (in the limit this probability does not depend on N very much; it converges fast
to this value).
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First note that Taylor series to compute function f(x) = ex is the following:

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . =

∞∑
k=0

xk

k!
.

This series converges for every x ∈ R. By substituting the value x = −1 we get the
following:

e−1 = 0.367879441171442 . . . =
1

0!
− 1

1!
+

1

2!
− 1

3!
+ . . . .

The expression proven in (a) is the partial sum of this series (the first 2N − 2 members
are only written), and it is divided by 3!. Therefore the limit is 1

6
e−1.
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