
Homework 13
Discrete Structures

Due Friday, April 16, 2021
*Submit each question separately as .pdf*

1. Recall that an undirected graph is k-regular if every vertex has degree k. Prove that a
2k-regular graph has no cut edges, for every k ∈ N.
This will be a proof by contradiction, so we assume there exists a cut edge e. Without
loss of generality, assume that G = (V,E) is connected (if G is not connected, choose the
connected component containing e, and call that G). After removing e, there are two
connected components Ga = (Va, Ea) and Gb = (Vb, Eb), with a ∈ Va and b ∈ Vb. Every
vertex in Ga and Gb has degree 2k except a and b, which have degree 2k − 1. By the
handshaking theorem for Ga, we have

2|Ea| =
∑
v∈Va

deg(v) = 2k(|Va| − 1) + 2k − 1,

and similarly for Gb. However, the number on the left is even, but the number on the
right is odd, which is a contradicition.

2. Let G = (V,E) be bipartite. Prove that G does not have Cn as a subgraph, for n odd.
This will be a proof by contradiction, so we assume there exists a subgraph Cn of G, for
n odd. Let v1, . . . , vn be the vertices of the cycle in order, as below.

v1 v2 vn· · ·

Since G is bipartite, the vertex set V is decomposed as a union V1 ∪ V2 of disjoint sets
(that is, V1 ∩ V2 = ∅). Without loss of generality, suppose that v1 ∈ V1. This means
that v2 ∈ V2, which then implies that v3 ∈ V1 as well. Continuing this, we get that
v1, v3, v5, . . . , vn ∈ V1, since n is odd. However, there is an edge {vn, v1}, and both
v1, vn ∈ V1 are in the same partition. This is a contradiction, as there cannot be edges
between vertices of the same partition. Hence G cannot have Cn as a subgraph.

3. Construct an ordered rooted tree whose postorder traversal is

a, c, f, g, e, b, i, j, k, n,m, o, p, ℓ, h, d.

In this graph the vertex ℓ has four children, b has three children, d, e, h, m have two
children each, and all other vertices are leaves.
The tree is given below.
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4. Let G be a graph with 100 vertices with the following property: The graph G does not
contain K3 as a subgraph. Estimate the largest possible number of edges in G.
Note. An estimate has 2 parts. A lower bound shows a graph G = (V,E) with the
property and a possibly large number of edges |E| = m1. An upper bound proves that for
|E| = m2 the property must fail. (Ideally, m2 = m1 + 1; it would be the exact estimate.)

Claim 1 (Lower bound). There exists a graph not containing triangles with 2n vertices
and n2 edges.
Proof. This can be reached in a complete bipartite graph Kn,n. It contains n vertices in
one partition; another n vertices in another partition; and all pairs of vertices in opposite
partitions are connected. This graph does not contain any triangles (as triangle is not a
bipartite graph). And also it has n · n = n2 edges. �

Claim 2 (Upper bound). Any graph with 2n vertices and not containing a triangle
K3 as a subgraph has n2 vertices or less.
Proof. We prove this by induction. Note that for n = 1 we have a 2-vertex graph; it can
have one edge connecting both vertices, i.e. n2 = 12 = 1.
Inductive hypothesis n = k. Assume that any graph with 2n and without triangles there
are actually up to k2 edges.
We now set the vertex count n = k + 1. We must prove that there are no more than
(k+1)2 edges in such graph. First, note that an optimal (largest number of edges) graph
G contains at least one edge (empty graph would not be optimal). Let (u, v) be an edge
in the optimal graph G with 2(k + 1) vertices. We claim that there canot be two edges
(u,w) and (v, w) (for any w), because then u, v, w would be a triangle. Therefore either
u or v can connect to any of the 2k remaining vertices.
By assumption, G (minus two vertices u and v) is a 2k-vertex graph. If we add 1 (the
edge (u, v) itself) and then also 2k (the number of vertices that either u or v (but never
both!) have visited). Therefore the number of vertices in graph G is

|E| ≤ k2 + 1 + 2k = (k + 1)2.

This completes the proof by induction. �

5. A computer game uses a labyrinth – the directed graph shown in Figure 1. In the
beginning a ghost enters one of the 5 rooms A, B, C, D or E (any room with the
same probability p = 0.2). During the first step the ghost randomly chooses one of the
outbound edges of its current room and moves to another room; during the next step it
takes another outbound edge from its current state and so on.

(a) Find the probabilities for every room where the ghost will be after one, two and
three steps.

Initially the probabilities are represented by a vector(
p
(0)
A , p

(0)
B , p

(0)
C , p

(0)
D , p

(0)
E

)
= (0.2, 0.2, 0.2, 0.2, 0.2).

Assume that the ghost has made one step. For every vertex v ∈ {A,B,C,D,E}
we compute ghost’s probability to arrive there by adding up the probabilities of all
the inbound arrows (u, v) (multiplying the previous probability of u by a coefficient
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Figure 1: Arrows showing the possible moves.

1, (1/2), (1/3) (depending on how many arrows leave vertex u). Let us denote by
p
(n)
A the probability of ghost being in A (after n steps, where n = 0, 1, 2, . . .). The

probability of being in A at the next step is denoted as p(n+1)
A . (Similarly for vertices

B,C,D,E.)

p
(n+1)
A = 1 · p(n)E

p
(n+1)
B = 1

3
· p(n)A

p
(n+1)
C = 1

3
· p(n)A

p
(n+1)
D = 1

3
· p(n)A +1 · p(n)B +1

2
· p(n)C

p
(n+1)
E = 1

2
· p(n)C +1 · p(n)D

This is multiplication of a matrix with a probability vector. We multiply the initial
probability vector (1/5, 1/5, 1/5, 1/5, 1/5) with the same matrix one, two, and three
times. 

p
(1)
A

p
(1)
B

p
(1)
C

p
(1)
D

p
(1)
E

 =


0 0 0 0 1
1
3

0 0 0 0
1
3

0 0 0 0
1
3

1 1
2

0 0
0 0 1

2
1 0

 ·


1/5
1/5
1/5
1/5
1/5

 =


1/5
1/15
1/15
11/30
3/10

 .


p
(2)
A

p
(2)
B

p
(2)
C

p
(2)
D

p
(2)
E

 =


0 0 0 0 1
1
3

0 0 0 0
1
3

0 0 0 0
1
3

1 1
2

0 0
0 0 1

2
1 0

 ·


1/5
1/15
1/15
11/30
3/10

 =


3/10
1/15
1/15
1/6
2/5

 .


p
(3)
A

p
(3)
B

p
(3)
C

p
(3)
D

p
(3)
E

 =


0 0 0 0 1
1
3

0 0 0 0
1
3

0 0 0 0
1
3

1 1
2

0 0
0 0 1

2
1 0

 ·


3/10
1/15
1/15
1/6
2/5

 =


2/5
1/10
1/10
17/60
13/60

 .
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(b) Find the limit of the probabilities for the ghost to be in any of the five rooms as the
number of steps n → ∞.

Denote the limit values of ghost probabilities by p∗A, p∗B, p∗C , p∗D, p∗E (and they add
up to 1). In the limit they satisfy the system of linear equations:

p∗A = 1 · p∗E
p∗B = 1

3
· p∗A

p∗C = 1
3
· p∗A

p∗D = 1
3
· p∗A +1 · p∗B +1

2
· p∗C

p∗E = 1
2
· p∗C +1 · p∗D

Bring all terms from the right side to the left side (and add the 6th equation for the
sum of all probabilities):

p∗A −p∗E = 0
−1

3
· p∗A +p∗B = 0

−1
3
· p∗A +p∗C = 0

−1
3
· p∗A −p∗B −1

2
· p∗C +p∗D = 0

−1
2
· p∗C −p∗D +p∗E = 0

p∗A +p∗B +p∗C +p∗D +p∗E = 1

Solve this system with method of exclusion, find the following solution:

(p∗A, p
∗
B, p

∗
C , p

∗
D, p

∗
E) =

(
2

7
,
2

21
,
2

21
,
5

21
,
2

7

)
.

Note. This type of calculation is similar to Google Page Rank – it uses a similar
“random ghost” model to determine which Web pages have more inbound links (and
which of the inbound links come from pages that are themselves more popular).

4


