
Sample Questions
Discrete Structures

(Midterm scheduled for Wednesday, February 24, 2021)
*You must justify all your answers to recieve full credit*

1 Boolean Expressions
Truth tables, logical equivalences, set operations, Venn diagrams.

1.(a). Given a statement in English and atomic propositions, write its Boolean expression.

1.(b). Given a Boolean expression, fill in missing values in its truth table.

1.(c). Given a Boolean expression equivalently transform it using Boolean identities.

1.(d). Given a Boolean expression, prove or disprove a tautology.

1.(e). Given a truth table, create a DNF or a CNF for it (and vice versa).

1.(f). Given a set expression, shade the regions in a Venn diagram that belong to it.

1.(g). Given two set expressions prove or disprove set identity or subset relation.

1.(a). Rewrite both English sentences (P1 and P2) as Boolean expressions using the given propo-
sitional variables.
P1 := “If it is not snowing nor raining, then Gilbert has to tend his garden.”
Propositional variables in P1:
S := “It is snowing”
R := “It is raining”
G := “Gilbert has to tend his garden”
P2 := “Jane will be a candidate in the elections regardless of whether she has a chance
to be elected or not.”
Propositional variables in P2:
J := “Jane will be a candidate in the elections.”
E := “She has a chance to be elected.”

The construct “not A nor B” commonly means ¬A∧¬B. The language construct “regard-
less” commonly means that all the conditions listed will imply the conclusion mentioned
earlier. We rewrite the both sentences:

P1 = ¬S ∧ ¬R → G.

P2 = (E → J) ∧ (¬E → J).

Note. To get full credit for this, try to reflect the sentence structure as exactly as you can. Simplifying
the expression P1 as ¬(S ∨R) → G or writing simply P2 = J (“Jane will be candidate”) is undesirable,
since we want to reflect the logical structure of the English sentences; we do not want to apply any
interpretations.

1.(b). Consider the following Boolean expression E = p → q → r. Fill in the missing 4 slots in
its truth table.



p q r E

True True True . . .

True True False . . .

True False True . . .

True False False . . .

False True True True

False True False True

False False True True

False False False True

Rewrite the expression using the precedence/associativity rules for implication (and then
plug in value p = True, since all the values we need are in the upper part of the table,
where p is true. Rewrite the expression:

p → q → r ≡
≡True → (q → r) ≡
≡(q → r).

The only value False is when q is True, but r is False.

p q r E

True True True True

True True False False

True False True True

True False False True

False True True True

False True False True

False False True True

False False False True

Note. In these transformations it is important to interpret the Boolean expression in the right way (using
precedence/associativity rules when necessary). For example, if you wrongly interpret E = p → q → r

as (p → q) → r, you would get wrong truth table.

1.(c). Transform the Boolean expression p∨ q∧ r into a logically equivalent one, using the same
propositional letters p, q, r and two connectors: implication → and negaton ¬.

We know that A → B means ¬A ∨ B (for an implication to be True either its condition
must be False, or the conclusion is true). Therefore

(A ∨B) ≡ (¬A → B). (1)



Conjunction ∧ has higher priority than ∨. So we transform the expression p ∨ (q ∧ r):
p ∨ (q ∧ r) ≡ Replace ∧ by ∨ using De Morgan’s law

≡p ∨ ¬(¬q ∨ ¬r) ≡ Next, replace ∨ by → using identity (1)

1.(d). Prove or disprove that the following is a tautology:
(p → q → r) ↔ ¬(p ∧ q ∧ ¬r).

Rewrite the expression, replacing A → B as (¬A ∨B) and also the De Morgan’s law:

p → (q → r) ≡
≡¬p ∨ (q → r) ≡
≡¬p ∨ (¬q ∨ r) ≡
≡¬p ∨ ¬q ∨ r ≡
≡¬(p ∨ q ∨ ¬r).

We see that both expressions in (. . .) ↔ (. . .) are indeed equivalent.
Note. Tautologies are typically proven using Boolean identities (like in the example above); building a
full truth-table is usually too time-consuming and error-prone. If your question contains a non-tautology,
the easiest way to disprove is with a counter-example: Just pick the values for p, q, r to make the value
of the expression False.

1.(e). Build the truth table for the following CNF:
f(A,B,C) = (A ∨B ∨ C) ∧ (A ∨B ∨ ¬C) ∧ (A ∨ ¬B ∨ C).

In the table below we insert value False in three places corresponding to the three clauses
in the CNF. For example (A∨B ∨¬C) in the CNF means that f(False, False, True) =
False.

A B C f(A,B,C)

False False False False

False False True False

False True False False

False True True True

True False False True

True False True True

True True False True

True True True True



1.(f). Let A,B,C be subsets in the same universe U . Draw a Venn diagram for these sets and
shade the region corresponding to the set S = A⊕ (B ⊕ C).

Symmetric difference is commutative and associative, so we need to shade S = A⊕B⊕C
(it contains only those points which belong to odd number of sets A,B,C; i.e. either to
one of these sets or to all three of them. See Figure 1.

Figure 1: Venn diagram showing A⊕B ⊕ C.

1.(g). Let A and B be two arbitrary subsets of the same universe U . Prove or disprove the
following set identity:

A⊕ (A ∩B) = A−B.

Method 1: Can use set identities like this:

A⊕ (A ∩B) =(A− (A ∩B)) ∪ ((A ∩B)− A) = (Definition of symmetric difference)
=(A− (A ∩B)) ∪∅ = (A ∩B is a subset of A, so difference is ∅)
=(A ∩ (A ∩B)) = (Replace set difference by an intersection)
=A ∩ (A ∪B) = (De Morgan’s law: complement of an intersection)
=(A ∩ A) ∪ (A ∩B) = (Distributive law)
=∅ ∪ (A ∩B) = A−B.

Method 2: Can use “element method”: Assume that some x ∈ (A⊕ (A∩B)) and prove
that x must belong to A−B and also in the opposite direction. (Try it yourself.)

Method 3: You can draw Venn diagrams for both sides of the equality. (Try it yourself.)

2 Quantifiers
Predicates, quantifiers, precedence, simple proofs.



2.(a). Given an English sentence and predicates, write its predicate expression.

2.(b). Given a predicate expression, restore parentheses, identify free/bound variables.

2.(c). Given a predicate expression, write its negation (De Morgan laws etc.).

2.(d). Given truth tables for predicates, evaluate nested quantifier expressions.

2.(e). Given a description of a set, define it in a set-builder notation.

2.(f). Given a pseudocode, write the predicate expression that it computes.

2.(a). Rewrite the statement as predicate expression.
Statement: “No judges are crooks; but there are judges who are elderly yet sharp-witted.”
Domain: H is the set of all humans.
Predicates J(x), C(x), E(x), S(x) from H to {True, False}:
Predicate J(x) is true iff human x is a judge.
Predicate C(x) is true iff human x is a crook.
Predicate E(x) is true iff human x is elderly.
Predicate S(x) is true iff human x is sharp-witted.

The connective “but” is commonly understood as a conjunction (also “yet” means con-
junction in this context). Also, the statement “no members of A are B” typically means
that for all elements of A the proposition ¬B must be true (A(x) → ¬B(x)). Or, in other
words, there is no such element of A such that B is also true.
So the statement consists of two subexpressions:

∀x ∈ H(J(x) → ¬C(x)) ∧ ∃x ∈ H(E(x) ∧ S(x)).

or equivalently:
¬∃x ∈ H(J(x) ∧ C(x)) ∧ ∃x ∈ H(E(x) ∧ S(x)).

Note. In the above expression, the scopes of two quantifiers do not interfere with each other (if you wish,
you could also use different variable in both expressions).

∀x ∈ H(J(x) → ¬C(x)) ∧ ∃x ∈ H(E(x) ∧ S(x)).

Note. In this example it is important to read the meaning; it was stressed that the same judge can be
elderly and sharp-witted. Writing ∃x ∈ H E(x) ∧ ∃x ∈ H S(x) would distort the meaning (in this case
elderly judges can be different people than the sharp-witted judges – even if they both exist).

2.(b). Consider the following predicate expression:

¬∃y (¬Q(x, z) ∨ P (x, y) ∧ P (y, x)) ∧ ∀x (Q(y, z) → ¬P (x, y) → P (y, x)). (2)

Rewrite the equation (2); insert all the parentheses so that every subexpression serving
as an argument for Boolean operations and quantifiers is in parentheses. Use the rules
for precedence for Boolean operators:
Rule1: Decreasing order of precedence: ¬, ∧, ∨, →, ↔
Rule2: Both quantifiers (∀, ∃) have the same (highest) precedence as ¬. Rule3: Implica-
tion and equivalence are right-associative; conjunction and disjunction are left-associative.
Also underline those variables which are bound. Leave all the unbound variables without
underlining.



Negations have the highest priority, surround them by parentheses:

¬∃y ((¬Q(x, z)) ∨ P (x, y) ∧ P (y, x)) ∧ ∀x (Q(y, z) → (¬P (x, y)) → P (y, x)).

Conjunctions have the next highest priority, surround them by parentheses:

¬∃y ((¬Q(x, z)) ∨ (P (x, y) ∧ P (y, x))) ∧ ∀x (Q(y, z) → (¬P (x, y)) → P (y, x)).

Implication is right associative, so we group it from the right:

¬∃y ((¬Q(x, z)) ∨ (P (x, y) ∧ P (y, x))) ∧ ∀x (Q(y, z) → ((¬P (x, y)) → P (y, x))).

Finally, surround in parentheses the larger subexpresisons:

(¬(∃y ((¬Q(x, z)) ∨ (P (x, y) ∧ P (y, x))))) ∧ (∀x (Q(y, z) → ((¬P (x, y)) → P (y, x)))).

Underline the bound variables (optionally, highlight the scope for every quantifier):

(¬(∃y ((¬Q(x, z)) ∨ (P (x, y) ∧ P (y, x))))) ∧ (∀x (Q(y, z) → ((¬P (x, y)) → P (y, x)))).

In particular, the quantifier ∀x only binds the variables x in the second subexpression;
the blue x and the underlined x have nothing in common (the bound variables could be
renamed without any effect on the meaning of the expression).

2.(c). Simplify the expression with negation so that negation is only applied to individual pred-
icates or propositional variables (rather than larger subexpressions or quantifiers):

¬ (∃x∀y (P (x, y) → Q(x, y)) ∨ ∃y∀x(¬P (x, y) ∧Q(x, y)))

¬ (∃x∀y (P (x, y) → Q(x, y)) ∨ ∃y∀x(¬P (x, y) ∧Q(x, y))) ≡
≡¬ (∃x∀y (P (x, y) → Q(x, y))) ∧ ¬ (∃y∀x(¬P (x, y) ∧Q(x, y))) ≡
≡ (∀x¬∀y (P (x, y) → Q(x, y))) ∧ (∀y¬∀x(¬P (x, y) ∧Q(x, y))) ≡
≡ (∀x∃y¬ (¬P (x, y) ∨Q(x, y))) ∧ (∀y∃x¬(¬P (x, y) ∧Q(x, y))) ≡
≡ (∀x∃y (¬¬P (x, y) ∧ ¬Q(x, y))) ∧ (∀y∃x(¬¬P (x, y) ∨ ¬Q(x, y))) ≡
≡ (∀x∃y (P (x, y) ∧ ¬Q(x, y))) ∧ (∀y∃x(P (x, y) ∨ ¬Q(x, y))) .

Note. Normally you would simplify the negation expression much faster without showing all the steps.
But in your answer (like any other algebraic transformation), make sure to show at least 1–2 intermediate
steps, not the bare answer. This also allows to get partial credit, if you have some typos in your answer.

2.(d). Check the following nested predicate statement on the predicates defined below:

∀x ∈ N ∃y ∈ N ((y > x) ∧ ¬(P (y) → Q(y))). (3)

P (x) defined on N = {0, 1, 2, . . .}; it is True iff x is full square.
Q(x) defined on N; it is true iff the last digit of x is not 1 or 2.



Figure 2: Predicate values that equal to True are shaded; False are white.

Determine whether the predicate expression (3) is True or False; explain your answer.
Both predicates are defined on the infinite set N = {0, 1, 2, 3, . . .} of natural numbers.
Some initial values are shown in Figure 2.

The predicate subexpression ∀x ∈ N ∃y ∈ N ((y > x) ∧ (. . .)) can be read as follows:
“There are arbitrarily large natural numbers y such that . . ..”
Literally: For any (no matter how large) x ∈ N there is an even larger y > x satisfying
the subexpression . . ..
In our case, the subexpression in place of (. . .) is ¬(P (y) → Q(y)). Namely, we want to
find y such that P (y) is True (y is a full square), but Q(y) is False (the last digit is 1 or
2).
It is easy to see that there are indeed arbitrarily large numbers y such that their square
ends with digit 1. (For example, y = 92 = 81, y = 192 = 361, y = 292 = 841, etc. are all
valid answers; they are all full squares and end with digit 1. For any x you can find an
even bigger y = (10k + 9)2 with this property.

2.(e). The following expression:
{x ∈ U |P (x)

is the regular set-builder notation: It denotes a subset of the universe U consisting of all
those x that make the predicate P (x) true.
Use this set-builder notation to describe the set of all full squares that have the last digit
equal to 6 (namely, the set {16, 36, 196, 256, . . .}). You can use the set of all integers Z
as the universe, the arithmetic operations (including (amod b), the remainder dividing a
by b), Boolean operations and quantifiers.

Full squares are numbers for which there exists a number m such that m2 = x.
Moreover, a number ends with digit 6, if its remainder when divided by 10 equals 6.
We use these facts to create the set-builder notation:

{
x ∈ Z | ∃m ∈ Z

(
m2 = x ∧ (m2 mod 10) = 6

)}
.

2.(f). Assume that there are two lists A[1..100] and B[1..100] containing 100 integer numbers
each. They are passed to the function computing MyPredicate(A,B) on these lists
(see pseudocode below). This function returns value True or False depending on the
numbers in lists A and B.



MyPredicate(A : IntegerList, B : IntegerList)

1 val := True

2 for i := 1 to 100

3 if A[i] > 0

4 if (not B[i] > 0)

5 val := False

6 return val

Write the predicate expression that is computed by this function. The expression can use
quantifiers ∀i ∈ {1, . . . , 100} and ∃i ∈ {1, . . . , 100}; all Boolean connectors, references to
array elements A[i] and B[i] as well as equality and inequality predicates.

The function MyPredicate(A,B) starts with the result val = True (but it can later
switch to False; and never can flip back to True). Therefore it is a ∀-type quantifier
(it is true for the empty set and also those sets, where the if statement on Line 4 never
happens).
The condition that makes this predicate false is when A[i] > 0, but B[i] ≤ 0. Therefore
the predicate expression computed by this function is this:

∀i ∈ {1, . . . , 100} (A[i] > 0 → B[i] > 0) .
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