
Sample Questions
Discrete Structures

(Midterm scheduled for Wednesday, February 24, 2021)
*You must justify all your answers to recieve full credit*

1 Boolean Expressions
Truth tables, logical equivalences, set operations, Venn diagrams.

1.(a). Given a statement in English and atomic propositions, write its Boolean expression.

1.(b). Given a Boolean expression, fill in missing values in its truth table.

1.(c). Given a Boolean expression equivalently transform it using Boolean identities.

1.(d). Given a Boolean expression, prove or disprove a tautology.

1.(e). Given a truth table, create a DNF or a CNF for it (and vice versa).

1.(f). Given a set expression, shade the regions in a Venn diagram that belong to it.

1.(g). Given two set expressions prove or disprove set identity or subset relation.

1.(a). Rewrite both English sentences (P1 and P2) as Boolean expressions using the given propo-
sitional variables.
P1 := “If it is not snowing nor raining, then Gilbert has to tend his garden.”
Propositional variables in P1:
S := “It is snowing”
R := “It is raining”
G := “Gilbert has to tend his garden”
P2 := “Jane will be a candidate in the elections regardless of whether she has a chance
to be elected or not.”
Propositional variables in P2:
J := “Jane will be a candidate in the elections.”
E := “She has a chance to be elected.”

1.(b). Consider the following Boolean expression E = p → q → r. Fill in the missing 4 slots in
its truth table.

p q r E

True True True . . .

True True False . . .

True False True . . .

True False False . . .

False True True True

False True False True

False False True True

False False False True

1.(c). Transform the Boolean expression p∨ q∧ r into a logically equivalent one, using the same
propositional letters p, q, r and two connectors: implication → and negaton ¬.



1.(d). Prove or disprove that the following is a tautology:

(p → q → r) ↔ ¬(p ∧ q ∧ ¬r).

1.(e). Build the truth table for the following CNF:

f(A,B,C) = (A ∨B ∨ C) ∧ (A ∨B ∨ ¬C) ∧ (A ∨ ¬B ∨ C).

1.(f). Let A,B,C be subsets in the same universe U . Draw a Venn diagram for these sets and
shade the region corresponding to the set S = A⊕ (B ⊕ C).

1.(g). Let A and B be two arbitrary subsets of the same universe U . Prove or disprove the
following set identity:

A⊕ (A ∩B) = A−B.

2 Quantifiers
Predicates, quantifiers, precedence, simple proofs.

2.(a). Given an English sentence and predicates, write its predicate expression.

2.(b). Given a predicate expression, restore parentheses, identify free/bound variables.

2.(c). Given a predicate expression, write its negation (De Morgan laws etc.).

2.(d). Given truth tables for predicates, evaluate nested quantifier expressions.

2.(e). Given a description of a set, define it in a set-builder notation.

2.(f). Given a pseudocode, write the predicate expression that it computes.

2.(a). Rewrite the statement as predicate expression.
Statement: “No judges are crooks; but there are judges who are elderly yet sharp-witted.”
Domain: H is the set of all humans.
Predicates J(x), C(x), E(x), S(x) from H to {True, False}:
Predicate J(x) is true iff human x is a judge.
Predicate C(x) is true iff human x is a crook.
Predicate E(x) is true iff human x is elderly.
Predicate S(x) is true iff human x is sharp-witted.

2.(b). Consider the following predicate expression:

¬∃y (¬Q(x, z) ∨ P (x, y) ∧ P (y, x)) ∧ ∀x (Q(y, z) → ¬P (x, y) → P (y, x)). (1)

Rewrite the equation (2); insert all the parentheses so that every subexpression serving
as an argument for Boolean operations and quantifiers is in parentheses. Use the rules
for precedence for Boolean operators:
Rule1: Decreasing order of precedence: ¬, ∧, ∨, →, ↔
Rule2: Both quantifiers (∀, ∃) have the same (highest) precedence as ¬. Rule3: Implica-
tion and equivalence are right-associative; conjunction and disjunction are left-associative.
Also underline those variables which are bound. Leave all the unbound variables without
underlining.



2.(c). Simplify the expression with negation so that negation is only applied to individual pred-
icates or propositional variables (rather than larger subexpressions or quantifiers):

¬ (∃x∀y (P (x, y) → Q(x, y)) ∨ ∃y∀x(¬P (x, y) ∧Q(x, y)))

2.(d). Check the following nested predicate statement on the predicates defined below:

∀x ∈ N ∃y ∈ N ((y > x) ∧ ¬(P (y) → Q(y))). (2)

P (x) defined on N = {0, 1, 2, . . .}; it is True iff x is full square.
Q(x) defined on N; it is true iff the last digit of x is not 1 or 2.
Determine whether the predicate expression (3) is True or False; explain your answer.

Figure 1: Predicate values that equal to True are shaded; False are white.

Both predicates are defined on the infinite set N = {0, 1, 2, 3, . . .} of natural numbers.
Some initial values are shown in Figure 2.

2.(e). The following expression:
{x ∈ U |P (x)

is the regular set-builder notation: It denotes a subset of the universe U consisting of all
those x that make the predicate P (x) true.
Use this set-builder notation to describe the set of all full squares that have the last digit
equal to 6 (namely, the set {16, 36, 196, 256, . . .}). You can use the set of all integers Z
as the universe, the arithmetic operations (including (amod b), the remainder dividing a
by b), Boolean operations and quantifiers.

2.(f). Assume that there are two lists A[1..100] and B[1..100] containing 100 integer numbers
each. They are passed to the function computing MyPredicate(A,B) on these lists
(see pseudocode below). This function returns value True or False depending on the
numbers in lists A and B.

MyPredicate(A : IntegerList, B : IntegerList)

1 val := True

2 for i := 1 to 100

3 if A[i] > 0

4 if (not B[i] > 0)

5 val := False

6 return val

Write the predicate expression that is computed by this function. The expression can use
quantifiers ∀i ∈ {1, . . . , 100} and ∃i ∈ {1, . . . , 100}; all Boolean connectors, references to
array elements A[i] and B[i] as well as equality and inequality predicates.


	Boolean Expressions
	Quantifiers

