
Midterm
Discrete Structures

Wednesday, February 24, 2021

*You must justify all your answers to recieve full credit*

1. (a) Write the following sentence as a Boolean expression: “To get an early vaccine it is
sufficient to be a public servant involved in the continuous operation of government
or a senior citizen with a referral from a family doctor.”
Use the following atomic propositions:
V := “One can get an early vaccine”
G := “One is a public servant involved in the continuous operation of government”
S := “One is a senior citizen”
R := “One has a referral from a family doctor.”

(b) Write an equivalent Boolean expression – the contrapositive of the previous one.

(a) Sufficient condition is the one that implies the needed result (but not the other way
round: There may be other reasons to get an early vaccine):

(G ∨ (S ∧R))→ V.

(b) Contrapositive exchanges both sides of an implication and adds negation:

¬V → ¬(G ∨ (S ∧R)).

2. Let A,B,C be subsets in the same universe U . Draw a Venn diagram for these sets and
shade all the regions corresponding to the set S:

S = (A ∪B ∪ C) ∩ (A ∪B ∪ C) ∩ (A ∪B ∪ C).

Consider clause/subexpression (A∪B∪C). It includes everything, except the points that
belong only to the set C (they are neither in the union A ∪ B nor in C. Therefore the
intersection will not contain region that is only covered by the set C. Other subexpressions
can be analyzed similarly - so the intersection will not contain regions covered with just
the set A and just the set B either. See Figure 1.

Figure 1: Venn Diagram for Q2 (Regions belonging to S are shaded blue).
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Note. This set expression behaves somewhat similarly to the CNF (Conjunctive Normal
Form) in Boolean logic - it lists all those regions that we do not want. And then intersects
them (or, in case of CNF - they are joined by a conjunction).

3. Let A,B,C be three arbitrary subsets of the same universe U . Prove or disprove the
following set identity:

(B ⊕ C) ∪ A = (B ∪ C)⊕ (A− C).

This set identity is false in the general case.

Consider an element x that belongs to A and B, but does not belong to C.
Then x ∈ (B ⊕ C) ∪ A (since it is a union with set A: should contain all x ∈ A).
On the other hand, x 6∈ (B ∪C)⊕ (A−C), since x belongs to both (B ∪C) and (A−C),
but not to their symmetric difference ⊕.

Note. Just like any other set expression, there may be cases when the equality holds (if
you pick A,B,C in a special way), but it is not an identity; it is not true in the general
case.

4. Let P (x, y) and Q(x, y) be two predicates defined on pairs of integers. Simplify the
expression so that all negations are applied directly to the predicate symbols:

¬(∀y ∈ Z (¬Q(x, z) ∨ P (x, y)) ∧ ∃z ∈ Z ∀x ∈ Z (Q(y, z)→ ¬P (x, y))).

Apply De Morgan’s law to the outermost operation: ∧.

¬(∀y ∈ Z (¬Q(x, z) ∨ P (x, y))∧∃z ∈ Z ∀x ∈ Z (Q(y, z)→ ¬P (x, y))) ≡
≡¬(∀y ∈ Z (¬Q(x, z) ∨ P (x, y)))∨¬(∃z ∈ Z ∀x ∈ Z (Q(y, z)→ ¬P (x, y))).

Negate all the quantifiers (negation switches ∃ into ∀ and vice versa). These are also
called De Morgan’s laws (for quantifiers rather than simple propositions):

¬(∀y ∈ Z (¬Q(x, z) ∨ P (x, y))) ∨ ¬(∃z ∈ Z ∀x ∈ Z (Q(y, z)→ ¬P (x, y))) ≡
≡(∃y ∈ Z ¬(¬Q(x, z) ∨ P (x, y))) ∨ (∀z ∈ Z ∃x ∈ Z ¬(Q(y, z)→ ¬P (x, y))).

Finally, apply negations to the innermost subexpressions (and drop double negations
whenever they occur):

(∃y ∈ Z ¬(¬Q(x, z)∨P (x, y))) ∨ (∀z ∈ Z ∃x ∈ Z ¬(Q(y, z)→¬P (x, y))) ≡
≡(∃y ∈ Z (¬¬Q(x, z) ∧ ¬P (x, y))) ∨ (∀z ∈ Z ∃x ∈ Z (Q(y, z) ∧ ¬¬P (x, y))) ≡
≡(∃y ∈ Z (Q(x, z) ∧ ¬P (x, y))) ∨ (∀z ∈ Z ∃x ∈ Z (Q(y, z) ∧ P (x, y))).

Here we also use the Boolean equivalence ¬(A→ B) ≡ (A ∧ ¬B).

5. Simplify the expression with negation so that negation is only applied to individual pred-
icates or propositional variables (rather than larger subexpressions or quantifiers):

Inadvertently left without an expression. We skiped this exercise.
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6. Use the set-builder notation to describe the set of all positive odd integers n such that
for every prime p dividing n, the number p2 also divides n. Here is an (incomplete) list
of the numbers in this set:

S = {1, 9, 25, 27, 49, 81, 121, 125, 169, 225, 243, . . .}.

In the set-builder notation you can use Z+ (all positive integers), arithmetic operations,
Boolean operations, quantifiers, and these two predicates:

Prime(x) is true iff x is a prime.
(a | b) is true iff a divides b.

The proposition that “the number n is odd” translates as ¬(2 | n), i.e. number 2 does
not divide n.
The proposition that “the number n is divisible by a prime p” translates as (p | n).
The proposition that “the number n is divisible by a prime square p2” translates as
(p2 | n).

We could combine the last two propositions like this:

∀p ∈ Primes ((p | n)→ (p2 | n)).

Unfortunately, we do not have the set Primes (but only the set Z+ of all positive integers.
But we do have the predicate that always tells, if a number is prime or not. We can add
this condition Prime(p) in front (to express the fact that p2 | n should be true only for
primes dividing n.

The final expression looks like this:

S = {n ∈ Z+ | ¬(2 | n) ∧ ∀p ∈ Z+(Prime(p)→ (p | n)→ (p2 | n))}.

Note. One can rewrite the last implication (using the fact that → is right-associative).
So, these are also valid answers (they are all logically equivalent ways to write the same
thing).

S = {n ∈ Z+ | ¬(2 | n) ∧ ∀p ∈ Z+(Prime(p)→ ((p | n)→ (p2 | n)))}.

S = {n ∈ Z+ | ¬(2 | n) ∧ ∀p ∈ Z+((Prime(p) ∧ (p | n))→ (p2 | n))}.

Any other answers are fine too as long as they describe the same set.

Set of all numbers (even and odd) with this property is also known as Powerful numbers
- https://bit.ly/3sEefft, but one does not need to know anything about them (just
translate their definition into set-builder notation).

7. Prove or disprove by a counterexample the following two statements:

(a) Statement1: “Function f : R→ R given by f(x) = 3x− 7 is surjective.”

(b) Statement2: “Function f : Z→ Z given by f(x) = 3x− 7 is surjective.”
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(a) The function f(x) = 3x− 7 is surjective as a real-valued function.
Indeed, pick any real number y ∈ R. Then the equation

f(x) = 3x− 7 = y has this solution: x =
y + 7

3
.

(b) The function f(x) = 3x− 7 is not surjective as an integer function.
For example, we cannot find any integer x ∈ Z that satsifies 3x−7 = 0. (Number 7 is not
divisible by 3.) Therefore some integer numbers such as 0 ∈ Z do not have any pre-image
that would map to them.

8. Is the number
2

1 +
√

5
rational or irrational? Prove your answer.

(If necessary, you can use the following Lemma: For any positive integer n, the square
root
√
n is either itself a positive integer or it is irrational.)

We prove that
2

1 +
√

5
is irrational.

Proof by contradiction. Assume that this number is a rational number p/q ∈ Q. In this
case

2

1 +
√

5
=
p

q
.

Since 1 +
√

5 6= 0, we can flip both fractions:

1 +
√

5

2
=
q

p
,

1 +
√

5 =
2q

p
,

√
5 =

2q

p
− 1 =

2q − p
p

.

We have expressed
√

5 as a rational number (2q− p)/p. This is a contradiction. (We can
either prove directly that

√
5 is irrational; or we can use Lemma, since

√
5 is clearly not

an integer (since 22 = 4 < 5, but 32 = 9 > 5, so
√

5 ∈ (2; 3), so it cannot be an integer
(and by Lemma it must be irrational).

9. Consider set S defined by this set-builder expression:

S =
{
x ∈ Z+ | x 6 80 ∧ ∃m ∈ Z+

(
x = m2

)}
.

(a) List the elements of the set S.

(b) Find the size of its power set |P(S)|.

(a) If we translate the set-builder notation back to human language, the set S consists
of all positive full squares less or equal than 80. Let us list all these numbers:

S = {1, 4, 9, 16, 25, 36, 49, 64}.
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(b) The powerset P(S) contains exactly 2|S| = 28 = 256 elements.
Any finite set S has exactly 2|S| subsets, since we can make exactly n = |S| choices when
deciding, if some element si ∈ S belongs or does not belong to some subset A. We can
make these choices in 2n ways.

10. Let f : N→ N be defined by f(n) =
n∑

j=1

j(j + 1).

(a) Find the smallest k such that f(n) is in O(nk).

(b) Find C, n0 so that |f(n)| does not exceed C · |nk| for all n > n0.

(a) The smallest value k is k = 3. We can compute this sum:

n∑
j=1

j(j + 1) = (12 + 22 + . . .+ n2) + (1 + 2 + . . .+ n) =

=
n(n+ 1)(2n+ 1)

6
+
n(n+ 1)

2
=
n3 + 3n2 + n

6
+
n2 + n

2
=

1

3
n3 + n2 +

2

3
n.

This is a polynomial of degree 3, since it contains 1
3
n3. Every polynomial grows as fast

as its highest-order term which is n3.

(b) We can pick C = 2, n0 = 1. In this case for each n ≥ 1 we have∣∣∣∣13n3 + n2 +
2

3
n

∣∣∣∣ ≤ ∣∣∣∣13n3 + n3 +
2

3
n3

∣∣∣∣ = 2
∣∣n3
∣∣ .

In this inequality we use the fact that n2 ≤ n3 and n ≤ n3 whenever n ≥ n0 = 1.

Note. We can make a conclusion that the function f is in O(n3) (and this result can be
shown by the definition and cannot be improved; i.e. we cannot replace this by O(nk) for
any k < 3, since f contains a cubic term.

11. (a) Use Euclidean algorithm to find gcd(426, 156) (the greatest common divisor).

(b) Use the GCD found in the previous step to compute lcm(426, 156) (the least common
multiple).

(a) We divide 426 by 156 to get remainder 114. Then divide 156 by 114 to get remainder
42 and so on. Euclidean algorithm can be written as a chain of equalities:

gcd(426, 156) = gcd(156, 114) = gcd(114, 42) = gcd(42, 30) =

= gcd(30, 12) = gcd(12, 6) = gcd(6, 0) = 6.

(b) The LCM (least common multiplier) for any two numbers a, b satisfies this identity:
gcd a, b · lcm(a, b) = a · b. Therefore we can express

lcm(426, 156) =
426 · 156

gcd(426, 156)
=

426 · 156

6
= 426 · 26 = 11076.
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12. Consider the system of congruences
x ≡ 1 (mod 5),
x ≡ 2 (mod 7),
x ≡ 3 (mod 9).

(a) Find one solution to this system of congruences.

(b) Describe all the solutions to this system.

(b) First we do part (b) to get all the solutions, then take a specific one for part (a).
Since 5,7,9 are all coprime, we apply the Chinese Remainder Theorem, which guarantees
the existence of a solution. First use Bezout’s identity on three pairs of numbers:

5 and 7 · 9 =⇒ ∃ a1, b1 with 5a1 + 63b1 = 1 =⇒ 63b1 ≡ 1 (mod 5)
7 and 5 · 9 =⇒ ∃ a2, b2 with 7a2 + 45b2 = 1 =⇒ 45b2 ≡ 1 (mod 7)
9 and 5 · 7 =⇒ ∃ a3, b3 with 9a3 + 35b3 = 1 =⇒ 35b3 ≡ 1 (mod 9)

By trial and error (checking 5 values for b1, 7 values for b2, 9 values for b3), we find:

b1 ≡ 2 (mod 5), b2 ≡ 5 (mod 7), b3 ≡ 8 (mod 9).

The Chinese Remainder Theorem tells us that a solution to the given system is

1 · 63 · 2 + 2 · 45 · 5 + 3 · 35 · 8 (mod 5 · 7 · 9)

= 126 + 450 + 840 (mod 315)

= 1416 (mod 315).

We are technically done, as all solutions to this system may be expressed as 1416 + 315k
for any k ∈ Z. Since 1416 > 315, we can simplify the first term as 1416 ≡ 156 (mod 315),
to get that all solution are of the form 156 + 315k, for any k ∈ Z.

(a) One solution is for k = 0, so x = 156.

13. Consider the two numbers in binary notation

α = 1110011102,

β = 11102.

(a) Express β as a sum of powers of 2.

(b) Show how to multiply the two binary numbers α and β on paper (similar to the
“school algorithm”. It would look like this – with 0s and 1s instead of asterisks:

111001110

Ö 1110

---------

*********

*********

... ...
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(a) We can express by the definition of binary notation for positive integer numbers:

β = 11102 = 1 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 8 + 4 + 2 = 14.

(b) We complete the numeric multiplication. Filling in the digits is straightforward (since
multiplication by digits 0 and 1 is easy; we just need to remember to shift them accord-
ingly). The only unusual part is adding together the digits position-by-position (as there
may be large carries to the next binary position).

111001110

Ö 1110

---------

000000000

111001110

111001110

111001110

-------------

1100101000100

14. Express the periodic decimal fraction 3.378378378 . . . = 3.(378) as an irreducible rational
number p

q
. Show the formulas (infinite geometric progression or some other arithmetic

manipulation) that can be used to get your answer.

First we note that

0.(378) =
378

1000
+

378

1000 · 1000
+ · · · =

∞∑
n=0

378

1000
·
(

1

1000

)n

.

Recall that the sum of a geometric series is

∞∑
n=1

arn =
a

1− r
,

whenever |r| < 1. Hence in this case

3.(378) = 3 +
∞∑
n=0

378

1000
·
(

1

1000

)n

= 3 +
378/1000

1− 1/1000
= 3 +

378

999
=

3 · 999 + 378

999
.

This answer may be simplified to 125
37

, but the expression above is an acceptable answer,
in the absence of caclulcators.

15. Prove by mathematical induction that for all n ∈ Z+ the following equality holds:

n∑
j=1

(
1

2j − 1
− 1

2j + 1

)
=

2n

2n+ 1
.
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Statement: Let P (n) be the statement “
n∑

j=1

(
1

2j − 1
− 1

2j + 1

)
=

2n

2n+ 1
”.

Base case: When n = 1, we have

1∑
j=1

(
1

2j − 1
− 1

2j + 1

)
=

1

2− 1
− 1

2 + 1
= 1− 1

3
=

2

3
,

and
2n

2n+ 1
=

2

2 + 1
=

2

3
.

Hence P (1) holds.

Inductive hypothesis: Suppose that P (n) holds for some n > 1.

Inductive step: Applying the inductive hypothesis in the second line below, the sum
for P (n+ 1) is

n+1∑
j=1

(
1

2j − 1
− 1

2j + 1

)
=

(
n∑

j=1

(
1

2j − 1
− 1

2j + 1

))
+

(
1

2(n+ 1)− 1
− 1

2(n+ 1) + 1

)
=

2n

2n+ 1
+

1

2n+ 1
− 1

2n+ 3

=
2n(2n+ 3) + (2n+ 3)− (2n+ 1)

(2n+ 1)(2n+ 3)

=
4n2 + 6n+ 2n+ 3− 2n− 1

(2n+ 1)(2n+ 3)

=
4n2 + 6n+ 2

(2n+ 1)(2n+ 3)

=
(2n+ 1)(2n+ 2)

(2n+ 1)(2n+ 3)

=
2(n+ 1)

2(n+ 1) + 1
.

Hence P (n+ 1) holds.

Conclusion: By the principle of mathematical induction, P (n) holds for all n ∈ N.
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