
Discrete
Structures

Worksheet 5 Spring 2021
February 3/5

Recall the definition of Big-O notation: Let f, g : X → R be functions, for X ⊆ R and a ∈ R.
Then we say “f(x) is Big-O of g(x) as x goes to a”, and write:

“f(x) = O(g(x)) as x → a”, or “f(x) is O(g(x)) as x → a”

if there exists ϵ > 0 and M > 0 such that |f(x)| 6 M |g(x)| for all x ∈ (a − ϵ, a + ϵ). If a is
clear from context, and most often a = ∞, we write

“f(x) = O(g(x)”, or “f(x) is O(g(x))”,

and in the a = ∞ case, the condition on x is changed to “for all x > ϵ”. This condition is
specialized to functions whose domain is X = Z ⊆ R in Question 5.

1. Warm up: Write the following English sentences using logical symbols. Avoid using the
negation symbol ¬ by changing the quantifiers and the inequality signs.

(a) For functions f : R → R and g : R → R it is not the case that f is O(g(n)).
(b) The inequality f(n) > g(n) holds for any real argument n, but f is not Θ(g(n)).
(c) If f is not O(g(n)), then g is not Ω(f(n)).

2. Recall the remainder function rem : Z × Z → Z that gives the remainder when the first
input is divided by the second input. Consider the following algorithm, which takes as
input an integer n.

1 procedure func(n : integer)
2 m := ⌊log2(|n|)⌋
3 if rem(m, 2) = 0:
4 k := ⌊current temperature⌋
5 if rem(m, 2) = 1:
6 k := func(3n+ 2)
7 return k

(a) What is the output type of this algo-
rithm?

(b) Is this algorithm finite?
(c) Is this algorithm effective?
(d) What happens when a real number is

input instead of an integer?

3. This question compares the linear search and the binary search algorithms.

(a) What is a difference between the inputs of these two algorithms?
(b) What is a difference between the procedures of these two algorithms?
(c) What is a difference between the worst cases of these two algorithms?
(d) Given an example of an input on which the binary search algorithm takes less steps

than the linear seacrh algorithm. A “step” is considered to be every event in which
the element to find x is compared with a list element.

(e) Suppose that the input list is infinitely long.
i. What problems are encoutered by each of these two algorithms?
ii. Suggest a solution to fix these problems.

4. (a) In your own words, what does it mean for a problem to be an optimization problem?
(b) In your own words, what does it mean for an algorithm to be a greedy algorithm?
(c) Trace out S, j in the greedy algorithm for scheduling talks (Algorithm 8 on page

212) on the start times for the talks as below.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

si 9 : 00 13 : 30 17 : 00 13 : 00 11 : 30 15 : 00 11 : 00 9 : 30

ei 10 : 00 14 : 45 17 : 30 14 : 00 12 : 00 15 : 50 12 : 30 10 : 30

5. For each function below and its given growth rate, find C ∈ N and the smallest possible
n0 ∈ N such that ∃ C ∈ Z+ ∃ n0 ∈ Z+ ∀ n ∈ Z+ (n > n0 → |f(n)| ≤ C · |g(n)|).

(a) Let f(n) = n3 + 88n2 + 3, and you may assume that f(n) is O(n3).
(b) Let g(n) = ln(n4) + n · arctan(n), and you may assume that g(n) is O(n).

6. Let n,m ∈ Z>0.

(a) Suppose that f(x) = O(xn) as x → 0, and g(x) = O(xm) as x → 0. Show that
f(x) + g(x) = O(xk) as x → 0, where k = min{m,n}.

(b) Suppose that f(x) = O(xn) as x → ∞, and g(x) = O(xm) as x → ∞. Show that
f(x) + g(x) = O(xℓ) as x → ∞, where ℓ = max{m,n}.

(c) Let f : Z>0 → Z>0 be the function that, for an input m, returns the number of
times line 6 from Question 2 is called when the procedure is run on every integer
2m, 2m+ 1, . . . , 3m. Find the smallest function g(m), such that f(m) = O(g(m)).

(d) Do you think there exists an alogrithm that sorts a list of length n, that has running
time O(1)? Why or why not?

7. Arrange the following functions in order of increasing O(−).

log(n10) (log n)2 log(log(n))

n log(n) log(n!) log(2n)

That is, if f(n) comes before g(n) in your arrangement, then f(n) is O(g(n).

8. For each function f(n) defined below, find the optimal g(n) such that f(n) is O(g(n)).
That is, make sure that if f(n) is also O(h(n)), then g(n) is O(h(n)).

(a) f(n) = 12 + 22 + . . .+ n2

(b) f(n) =
3n− 8− 4n3

2n− 1

(c) f(n) =
n∑

k=1

k3

(d) f(n) =
6n+ 4n5 − 4

7n2 − 3

(e) f(n) =
n∑

k=2

k · (k − 1)

(f) f(n) = 3n2 + 8n+ 7

9. Match the statements in English on the left to the predicate expressions on the right.

[i] Some programs return the correct re-
sult for all possible inputs and they
never loop indefinitely.

[ii] For any program one can find another
program such that it returns the same
result for the same inputs as the first
one (or loops indefinitely, iff the first
program does the same).

[iii] There is a program that only loops in-
definitely for at most finitely many in-
puts (or maybe none at all), but for
all other inputs it produces the correct
result.

[iv] There is at least one Python program
that always halts, and for sufficiently
large inputs it produces the correct re-
sult, but it may err for some small-size
inputs.

[v] For a program to produce a correct re-
sult for some input i it is strictly nec-
essary to halt.

[vi] A Python program always produces
exactly one result for the given input
provided that it halts.

[I] ∀p ∈ P ∀i ∈ Z+ ∀r ∈ Z+

(A(p, i, r) ∧ C(i, r) → H(p, i))

[II] ∀p1 ∈ P ∃p2 ∈ P ∀i ∈ Z+ ∀r ∈ Z+(
(¬H(p1, i) ∧ ¬H(p2, i))

∨(A(p1, i, r) ↔ A(p2, i, r))
)

[III] ∃p ∈ P ∃N ∈ Z+ ∀i ∈ Z+ ∃r ∈ Z+

((i ≤ N ∧ ¬H(p, i)) ∨ (A(p, i, r) ∧ C(i, r)))

[IV] ∀p ∈ P ∀i ∈ Z+ ∀r1 ∈ Z+ ∀r2 ∈ Z+

(H(p, i) ∧ A(p, i, r1) ∧ A(p, i, r2) → r1 = r2)

[V] ∃p ∈ P ∃N ∈ Z+ ∀i ∈ Z+ ∀r ∈ Z+

(H(p, i) ∧ (A(p, i, r) ∧ (i > N) → C(i, r)))

[VI] ∃p ∈ P ∀i ∈ Z+ ∀r ∈ Z+

(H(p, i) ∧ (A(p, i, r) → C(i, r)).

The functions A,H,C are defined as below.

• A(p1, i2, r3) is true iff Python program p1 ∈ P receives input i2 ∈ Z+ and outputs
result r3 ∈ Z+

• H(p1, i2) is true iff program p1 ∈ P receives input i2 and halts (that is, does not
loop indefinitely)

• C(i1, r2) is true iff for input i1 the correct result is r2

10. (a) You have 4 coins with different weights. You can compare any two of them on
two-sided balance scales (you can determine, which coin is heavier). The task is to
arrange them in increasing order by their weight. Assume that somebody claims
that using these scales 4 times is always sufficient. How many outcomes can you
have, if you use scales 4 times (and every time there are two possibilities – either
one side is heavier or the other).
Find the number of ways 4 coins can be arranged in some order (these ways are
called permutations).

(b) You have 16 stones; you know that one of them is radioactive. You can put any
number of stones in an analyzer and it tells, if any of the stones among those tested
were radioactive (but the device does not point to the radioactive stone). Can you
find the radioactive stone using the analyzer just 4 times?

11. Consider the set X = {1, 2, . . . , n} and subsets S1, . . . , Sn ⊆ X. Consider an algorithm
A that determines whether or not there is a disjoint pair of subsets Si ∩ Sj = ∅. The
algorithm works in the following way:

• A loops through the subsets, and for each subset Si, it loops through all other subsets
Sj, and for each of these other subsets Sj, it loops through all elements k in Si to
determine whether k also belongs to Sj.

• As soon as A finds any two disjoint subsets, it outputs their numbers i and j, and
immediately stops.

Answer the following questions about the algorithm A.

(a) Write A in pseudocode, using the line “if i ∈ Sj: . . .”.
(b) Write A in pseudocode, using for loops and iterator loops “foreach k ∈ Sj” and

test elements for equality, instead of using the line from part (a).
(c) Give a big-O estimate for the number of times the algorithm, as written in part (b),

tests element equality.

12. Consider the code in Python below.

sum = 0
for i in range(1,n+1):

for j in range(1,n+1):
sum += (i*t + j*t + 1)**2

The parameter n is a natural number, and t is fixed. Let f(n) be the number of operations
executed when the above code is run. An “operation” is addition, multiplication, or raising
to the power 2. Find the optimal g(n) so that f(n) is O(g(n)).

13. Let f : R → R and g : R → R be functions. Find all of the predicate logic expressions
below that are logically equivalent to “The function f(n) is O(g(n))”.

(a) ∀n ∈ R ∃n0 ∈ R ∃C ∈ R,
(n > n0 → |f(n)| ≤ C · |g(n)|)

(b) ∃n0 ∈ R ∀n ∈ R ∃C ∈ R,
(n > n0 → |f(n)| ≤ C · |g(n)|)

(c) ∃n0 ∈ R ∃C ∈ R ∀n ∈ R,
(n > n0 → |f(n)| ≤ C · |g(n)|)

(d) ∃n0 ∈ R ∃C ∈ R ∀n ∈ R,
(n > n0 → f(n) ≤ C · |g(n)|)

(e) ∃n0 ∈ R ∃C ∈ R ∀n ∈ R,
(n > n0 → |f(n)| ≤ C · g(n))

(f) ∃n0 ∈ R ∃C ∈ R ∀n ∈ R,
(n ≥ n0 → |f(n)| < C · |g(n)|)

(g) ∃n0 ∈ Z+ ∃C ∈ Z+ ∀n ∈ R,
(n > n0 → |f(n)| ≤ C · |g(n)|)

14. There is a collection of n stone axes of different weights, and the heaviest and the lightest
of them are used to commit a crime. You must figure out which axes were used, and you
may only compare any two axes on scales to find which is heavier and which is lighter.

(a) Describe an algorithm, in English or in pseudocode, to find both the heaviest and
the lightest stone axe in this collection.

(b) Is it possible to find the lightest and heaviest axes using less than 2n−2 comparisons?
(c) Is it possible to find the lightest and heaviest axes using less than (3/2)n− 2 com-

parisons?

(d) Suppose that you already know what are the lightest and heaviest axes in the collec-
tion of n axes. What is the minimum number of comparisons you need to convince
someone that these are indeed the lightest and heaviest ones?

15. Download the file worksheet05-predicates.v from ORTUS (under Week5). It contains
4 statements with predicates and proofs. (Homework 5 contains more statements to
prove.) Run the proofs contained there, make sure that you understand all the proof
tactics used. Also consider reading https://bit.ly/2O36EZ5, pages 38–43.
Hint. If Coq IDE crashes when you double-click the file, try opening Coq IDE application
without any file and copy-paste the text from worksheet05-predicates.v into the editor.

https://bit.ly/2O36EZ5

