1. Warm up: There are 6 doors in a Monty Hall game. A prize (worth 1 EUR) is behind one of the doors (the remaining 5 doors do not have any prize, so opening them gives 0 EUR). A participant randomly chooses some 3 doors: d_1 , d_2 , d_3 . Let X_1, X_2, X_3 be random variables describing the prize in EUR behind the doors d_1, d_2, d_3 respectively.

(a) What is the probability to win 1 EUR? Namely, find $p(X_1 + X_2 + X_3 = 1)$.

(b) Find the conditional probabilities:

 $p(X_2 = 1 | X_1 = 0)$ and $p(X_3 = 1 | X_1 = 0 \land X_2 = 0)$. Describe them informally.

- (c) Find the expected values $E(X_1)$, $E(X_1 + X_2)$ and $E(X_1 + X_2 + X_3)$.
- (d) Find the variances $V(X_1)$, $V(X_2)$, $V(X_3)$.
- (e) Find the variance $V(X_1 + X_2 + X_3)$. Is it three times larger than $V(X_1)$?
- (f) Find the variance $V(X_1 + X_2 + X_3)$, if the prize is measured in eurocents (not euros).
- 2. Some gambling parlor offers the following game: A visitor chooses any number $n \in \{1, 2, 3, 4, 5, 6\}$. Then he rolls three fair dice. If one of the dice rolls equals n, then the visitor wins 1 EUR. If two of the dice rolls equal n, then the visitor wins 2 EUR. If three of the dice rolls equal n, then the visitor wins 3 EUR. If none of the dice rolls equals n, then the visitor loses 1 EUR. Let X be the random variable describing the money that the visitor wins during one round of this game (one round = 3 dice rolls).
 - (a) Find p(X = 1),
 - (b) Find p(X = 2),
 - (c) Find p(X = 3),
 - (d) Find p(X = -1),
 - (e) Find E(X). What is the conclusion about this game: Who wins money (and how fast) as it is played long enough?
- 3. Urn A has three red and five white balls and Urn B has two red and seven white. You pick an urn at random and draw a red ball from it. What is the probability that it was Urn A?
- 4. You are looking for biased coins at a mint. You know that 99 out of every 100 coins are perfectly fair (probability to get heads is 50%) and that 1 out of 100 coins lands on heads 60% of the time.

You flip a coin 50 times and get 33 heads. What are the odds that this coin is biased?

- 5. In some imagined country there are 114 boys born for every 100 girls. Assume that some couple decides to have children until they have a girl. Denote by X the number of children in this family. It is a random variable that can take values $1, 2, 3, \ldots$ (X = 1, if they have a girl as their first child, etc.)
 - (a) Find p the probability that a girl is born.

- (b) Is it possible that this couple will have infinitely many children? What is the probability of this event?
- (c) Find E(X) the expected number of children in this family.
- (d) Find V(X) the variance of the number of children in this family.

Note. You may need to look up the formulas of Geometric distributions; see https://bit.ly/3cRuEHp and also (Rosen2019, p.510), Chapter 7.4.5 *The Geometric Distribution.*

6. Suppose that the number of aluminum cans recycled in a day at a recycling center is a random variable with an expected value of 50000 and a variance of 10000. Use Chebyshev's inequality to provide a lower bound on the probability that this center will recycle 40000 to 60000 cans on a certain day.

Note. Chebyshev's inequality estimates the probability that the value of the random variable X will be further than $k\sigma$ away from the expected value $\mu = E(X)$ (where $\sigma^2 = V(X)$ is the variance). See https://bit.ly/3tETO2u and also (Rosen2019, p.517) textbook, Chapter 7.4.8.