
Discrete
Structures

Worksheet 12.2 Spring 2021
March 26

1. Warm up:

(a) 3 hats are randomly given to 3 people. What is the probability that nobody gets
his/her own hat?

(b) There are two independent events:
E1 has 50% probability.
E2 has 20% probability. Find the probability that at least one of the events E1, E2

has occured.
(c) Pick a random number n ∈ {1, . . . , 40}; what is the probability that the fraction

n/40 is irreducible?

2. Answer the following questions about the Figure 1. Assume that all the disks initially
were on Peg 1 and the player wanted to move the whole stack to another peg.

(a) Which end-state can be achieved faster from the position shown in Figure –fig:w12-
hanoi-position: all disks on Peg 2 or all disks on Peg 3?

(b) How many steps have already been completed to reach the current state (from the
original state where all disks are on the Peg 1). How many steps are still necessary
to reach the end-state?

Figure 1: Some Hanoi Tower Position

3. Use the Master theorem to give tight asymptotic bounds for the following recurrences.

(a) T (n) = 2T (n/4) + 1

(b) T (n) = 2T (n/4) +
√
(n)

(c) T (n) = 2T (n/4) + n

(d) T (n) = 2T (n/4) + n2

4. Here is a “weighted” variant of a Tower of Hanoi. You still have exactly 7 disks as in
Figure 1. Moving Disk #1 costs 1 EUR, moving Disk #2 costs 2 EUR, moving Disk #3
costs 4 EUR, and so on. Moving Disk #7 costs 64 EUR.

(a) Assume that your task is to move all disks from Peg 1 to some other peg. For every
disk size count the times it has to be moved.

(b) Calculate the total cost to move all disks from one peg to another.
(c) Assume that we have a robot that supports the following procedure:

move(n, pegFrom, pegTo)



This procedure assumes that all the disks numbered 1, 2, . . . , n are already on Peg
number pegFrom. The device moves them all to the Peg pegTo. The procedure is
recursive (and it may call another procedure moveDisk to move one specific disk, if
it is at the top). Draw one more layer to the Figure 2 and for each node write the
associated costs.

Figure 2: The tree of recursive calls

5. Divide-and-Conquer algorithms. Imagine that somebody has invented a new opera-
tion a⊗ b for some objects a, b (both a, b have the same size n). Assume that s/he knows
how to express a⊗b using 7 operations ai⊗bi (where i = 1, 2, . . . , 7, and all ai, bi have size
n/2, i.e. half the size of the original operands a, b). (We do not care, what the operation
⊗ does; but we know that we can compute it for arguments a, b of length 1 in constant
time; it is therefore easy for short arguments.)
Find the best Big-O-Notation estimate for the time needed to compute a ⊗ b, if a, b are
both of size n.
(A) O(n2)
(B) O(n2 log n)
(C) O(n2.646)
(D) O(n2.808)
(E) O(n3)
(F) O(n3 log n)

6. Assume that there is a real-estate dealer; she wants to get the very best deal between
N = 100 proposals. Every proposal pi can be evaluated by a number v(pi) (a larger
number means a better deal). Assume that all the values v(pi) are different; and the
proposals p1, . . . , pN arrive in a random order (every permutation is equally likely). Her
strategy is as follows:

• Evaluate the first k proposals (for some fixed number k ∈ [0;N − 1]), but reject
them.

• Evaluate the subsequent proposals pk+1, . . . , pN and select the first proposal pj which
satisfies v(pj) > max(v(p1), v(p2), . . . , p(pk)), if it exists.

Answer the following questions:

(a) What are the possible outcomes of this algorithm; for what permutations does this
strategy lead to the best deal?

(b) What is the probability to find the best proposal for k = 0, k = 1, k = N − 1. (You
can replace N = 100.)

(c) What is the optimal value of the parameter k that gives the best chance to find
the best proposal with the algorithm given above? (You may need a computer
simulation to find out.)


