Library fromKnepleyTextbook_2_2
Ch2_3: Statements on Predicate Logic
Section Pred_Examples.
Variables A : Set.
Variables P Q : A->Prop.
Lemma ex_dist_or_for : (exists x:A, P x \/ Q x) -> (exists x:A, P x) \/ (exists x:A, Q x).
Proof.
intro H.
destruct H.
destruct H.
left.
exists x.
assumption.
right.
exists x.
assumption.
Qed.
Lemma demorgan_forall : (forall x : A, P x) -> ~ (exists y : A, ~P y).
Proof.
intro H.
unfold not.
intro.
destruct H0.
apply H0.
apply H.
Qed.
Lemma demorgan_forall2 : (forall x : A, P x) -> ~ (exists y : A, ~P y).
Proof.
intro H.
intro H1.
destruct H1.
destruct H0.
apply H.
Qed.
End Pred_Examples.